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Abstract—Bayesian optimization is a method of minimizing a
function can be evaluated but the function cannot be explicitly
written. This is useful for hyperparameter tuning in machine
learning. Minimizing the loss on the validation data is a
function where the hyperparameters of the machine learning
model are the input to the function. I study the choice of the ac-
quisition function in optimization performance using machine
learning with random forests and multilayer perceptrons. The
acquisition function is used to choose the next location for
function evaluation as function evaluation is done sequentially.
The machine learning task involves predicting read mapping
performance of bisulfite-treated short DNA reads based on
features extracted from the DNA reads. Bisulfite-treatment
is a sequencing method that is used to study the epigenetic
methylation of cytosine nucleic acids. The results of Bayesian
optimization were similar to grid search, and there was little
difference found in the choice of acquisition function. The
implementation of Bayesian optimization from skopt used
parallelization less efficiently than grid search.

1. Introduction

A DNA read sequencer produces short DNA fragments
from an organism, and DNA sequence alignment maps these
short DNA reads, which are strings over the nucleic acid
bases A, C, T, and G, to a reference genome. This process
can be error prone as the short DNA fragments may not
match a portion of the reference genome perfectly because
of natural variation and mutation or because of sequencing
error. Insight into why DNA mapping and alignment fails
could lead to more effective alignment software. I use
machine learning with features taken from the short DNA
fragments to predict which reads will align well.

A challenging read mapping task involves epigenetic
cytosine covalent modification. Epigenetic phenomena are
heritable biology that does not come from DNA sequence
data [1]. One of the most important and well studied epige-
netic phenomena is the covalent modification of the cytosine
nucleic acid. The 5-carbon of cytosine can be covalently
bonded to a hydroxymethyl, methyl, formyl, or carboxylic
group. The epigenetic methylation of cytosine plays an
important role in disease, development, and gene regulation.

Life experiences such as stress and toxin consumption affect
epigenetic phenomena in heritable ways.

One way to identify the locations of DNA methylation
is to sequence the DNA of an organism after it has been
treated with bisulfite and then to identify nucleic acid base
locations on a reference genome that differ in such a way
as to suggest covalent modification of the cytosine base.
Bisulfite converts unmethylated cytosine into thymine after
polymerase chain reaction (PCR) amplification. Bisulfite
treatment introduces more variation between the short DNA
reads and the reference genome, so alignment tasks with
bisulfite-treated DNA can be characterized by low alignment
quality [2].

DNA sequence mapping software that is used for regular
untreated reads includes Bowtie2 [3], BWA [4], and BFAST
[5]. Mapping software for bisulfite-treated reads must adjust
for the bisulfite treatment, and such software includes Bis-
mark [6], BWA-Meth [7], and BisPin [8]. There are many
more examples of these kinds of software. I used BisPin
to map bisulfite-treated reads since it performed well in a
previous study, and then I used machine learning with sci-
kit learn to find features of the DNA reads that correspond
with good alignment performance.

This project was used to explore Bayesian optimization
for machine learning hyperparameter tuning. Bayesian op-
timization is a way of finding a minimum of an objective
function when the function cannot be written explicitly but
it can be evaluated [9]. Bayesian optimization itself has
tuneable hyperparameters, and these include the acquisi-
tion function and the covariance function. The acquisition
function is used to choose which function point to evaluate
next, and the covariance kernel function determines how the
function evaluation observations are correlated and the prob-
abilities of unobserved function evaluations are calculated.
I study the choice of acquisition function.

2. Related Work

Bayesian optimization for machine learning is discussed
in the paper [9]. The paper claims that the expected im-
provement acquisition function and a Matern kernel work
the best for machine learning hyperparamter tuning, but no
evidence or research method for this is given. My study
attempts to address this by empirically evaluating Bayesian
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optimization for hyperparameter tuning on a data set by
varying the choice of acquisition function.

Other work has used machine learning to predict methy-
lation loci from DNA reads [10], [11], [12], DNA age
from methylation [13], [14], and DNA function from DNA
sequence identity [15], but I could not find examples of
research for predicting read alignment quality with machine
learning. My own study found that entropy corresponds to
read alignment categories [16].

3. Methods

3.1. Data Generation

Two million bisulfite-treated 200 base pair reads from
SRA number SRR1104850 was downloaded from the Se-
quence Read Archive [17]. These reads were aligned to
the human reference genome with BisPin on its default
settings without any ambiguously mapped read rescoring.
Reads with ambiguous bases (N’s) were removed from the
analysis since they would create a mixed single with entropy,
one of the features.

Sixty features were created from the DNA short reads.
These features included Shannon entropy [18], monomer
frequency, average read quality, average read quality dif-
ference, read quality variance, skewness, and kurtosis, two
sequence complexity measures from the paper [19], and
features for run lengths. The read was split into thirds, and
similar features for each third were created. Quality kurtosis
features and the read length feature were removed since
they were found to be uninformative. This left 55 features
for prediction. Entropy has been used in the DNA read
quality trimmer InfoTrim [20] and the bisulfite read mapper
BatMeth [21].

Each read was assigned a read alignment category from
the BisPin read mapper. These categories were uniquely
mapped, ambiguously mapped, filtered, and unmapped. Pre-
vious work found that entropy corresponded to alignment
categories [16]. This data is characterized by rare or im-
balanced classes. Since of one million reads, only a few
thousand are in the ambiguously mapped or unmapped
categories.

3.2. Machine Learning

Sci-kit learn (v0.19.1) was used to perform machine
learning, and scikit-optimize implemented Bayesian op-
timization (https://scikit-optimize.github.io/). One million
reads were used to do 3-fold cross validation, and then
500k reads were used as a test set to determine the
model’s performance with the accuracy metric. The fea-
tures were standardized with a StandardScaler, and
GridSearchCV was used for a grid search of the hyper-
parameters. BayesSearchCV, which uses Bayesian op-
timization for hyperparameter tuning from scikit-optimize,
was used as a drop in replacement for GridSearchCV.
BayesSearchCV uses a Matern kernel to determine co-
variance, and the parameters for the kernel are autotuned as

Acquisition Function Best Parameters Test set accuracy
EI 16,1.0 77.9826
LCB 15,1.0 77.9782
PI 14,1.0 77.9428
Hedge 16,1.0 77.9126

Figure 1. Random forest models with 25 iterations and the optimial max
depth and max features with test set accuracy.

Bayesian optimization progresses. There were four acqui-
sition functions tested: expected improvement (EI), lower
confidence bound (LCB), negative probability of improve-
ment (PI), and a hedging function that computes all of
the available acquisition functions and uses the softmax
of them (hedge). There are two other acquisition functions
that incorporate training time, but these were not tested.
In Bayesian optimization, the number of iterations are the
number of function evaluations performed.

Two machine learning models were used. Random
forests (RF) were trained, and the hyperparameters max
depth and max features were optimized. There are sev-
eral other hyperparameters for random forests. Multi-layer
perceptrons (MLP) with the regularization hyperparameter
alpha was optimized. The ReLU activation function with
stochastic gradient descent and an adaptive learning rate was
used for the MLPs. An initial optimization of the number
and depth of the layers was done, and four hidden layers
with depths (30, 20, 15, 10) were found to be optimal.

The machine learning analysis was done on an Intel Core
i7-5820K six core CPU @ 3.30 GHz with 48 GB RAM,
and timing information was calculated with Python’s now
function from the datetime library.

4. Results

The random forest models were trained with the four
acquisition functions with 25 function evaluations, and the
results are shown in Figure 1. Each model learned approx-
imately the same best parameters with some small differ-
ences in the max depth. The differences in accuracy are a
result of the random bootstraps that random forests produce
rather than the choice of acquisition function since the
acquisition functions are choosing almost identical hyperpa-
rameter settings. The total training time for each acquisition
function was approximately 1 hour and 20 minutes.

Grid search and Bayesian optimization was compared
with 110 iterations each in Figure 2. Grid search took
approximately 4 hours to complete with 5 processes, and
Bayesian optimization took 4 hours and 50 minutes to
complete but it was only able to use 3 processes at a
time because of the 3-fold cross validation and the fact
that Bayesian optimization is implemented to sample one
function evaluation at a time. The hedge acquisition function
was used, and the test set accuracy was similar to grid
search. The test set accuracy of these executions is slightly
better than those given in Figure 1, and this is probably
because of 110 models, some of the bootstrap replicates
will happen to be more predictive.
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Acquisition Function Best Parameters Test set accuracy
Grid Search 15,0.6 78.1394
Hedge 15,0.4807802 78.0888

Figure 2. Random forest models with 110 iterations for grid search and
Bayesian optimization. Optimal max depth and max features with test set
accuracy are shown.

Acquisition Function Best Parameters Test set accuracy
Grid Search 1.0 77.2996
Hedge 0.252171 77.278

Figure 3. MLP, 10 iterations, best alpha.

The results in Figures 1 and 2 suggest that using
Bayesian optimization with 25 executions is competitive in
accuracy and better in training time than the more exhaustive
grid search of 110 executions.

Figure 3 shows results for the MLP models with only 10
executions. The tuned alpha hyperparameter is quite differ-
ent, but the test set accuracy is similar. Both executions were
performed with 3 processes to determine the computational
overhead of using Bayesian optimization. The Bayesian op-
timization execution took 7 minutes 37 seconds, and the grid
search execution took 7 minutes 20 seconds. This suggests
that computational overhead for Bayesian optimization is
small averaging 1-2 seconds per execution.

5. Conclusions

Hyperparameter tuning with Bayesian optimization is
competitive with grid search, and little evidence was found
to prefer one acquisition function over another.

Perhaps Bayesian optimization with fewer executions
and much less training time will be as optimal as high
dimensional grid searches, but in low dimensional grid
searches, grid search may be more optimal in time be-
cause it exploits parallelization more efficiently in the
GridSearchCV and BayesSearchCV implementations.
A better use of parallelization for Bayesian optimization
may be possible using Monte Carlo simulation as discussed
in the paper [9], and this could make Bayesian optimiza-
tion as competitive in time with multiple processes as grid
search.

Perhaps floating point hyperparameters are more ef-
fectively optimized than discrete hyperparameters with
Bayesian optimization, and future work could include ex-
ploring this question. Future work could also include ex-
ploring the effects of different covariance kernels on opti-
mization.

Maybe formal mathematical criterion could be devel-
oped to give reasons why some kernel or acquisition func-
tion would be better for machine learning hyperparame-
ter tuning. Are close hyperparameters produce generally
smooth, continuous functions for some reason?

This prediction problem can be researched in its own
right by performing feature selection and by dealing with the
imbalanced classes problem. Features predictive of mapper
performance could lead to insights into producing a better

read mapper, and the imbalanced class problem could be
addressed by framing the problem as a regression problem
where the alignment score is used as a response variable
instead of alignment category. A variety of data can be
examined including regular DNA reads.
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