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1 Introduction
The initial goal of this paper is to analyze and see if there is any pattern that we as humans can
pick out by looking at the images that would have been the best training mini-batch at different
phases of training. Subsequently, we compute the full gradient, and then see which mini-batch
of examples would have led to the best approximation of the true gradient. Stochastic Gradient
Descent (henceforth SGD) has been a standard approach in machine learning. Mini-batch Gradient
Descent (henceforth MBGD) is another popular approach, that is a compromise between SGD and
the standard (Batch or Full) Gradient Descent (henceforth GD). While there has been extensive
research on efficient Mini-batch Training for Stochastic Optimization [16], there is a paucity of
research in discovering image patterns that could direct us to the best mini-batch at different
phases of training. To this end, we explore the existence of patterns in MBGD images in relation
to the GD, with the goal to find the best training mini-batch at different phases of training. We
compare the true gradients (ones from GD) with the mini-batch gradients (ones from MBGD) on
the CIFAR-10 dataset by developing an algorithm that finds the best results. Next, we implement
several heuristic metrics in order to discover patterns on these images, as it’s not only subjective
but also hard to discern objective patterns in images directly. To the best of our knowledge,
there has been no similar research in the past. Statisticians have used for years’ heuristics, such
as looking at plots, to quickly uncover patterns in their data without formal statistical tests. A
successful recognition of some patterns in this framework could save practitioners a significant
amount of time, since the optimization of the parameters is mostly done within a highly non-linear
surface that is computationally expensive for learning tasks with big data.

2 Related Work
Traditionally, it is well known that the objective function, F , should satisfy convexity and Lipschitz
continuity [1]. A problem with the traditional GD, in case the assumptions are violated, can con-
verge to a saddle point, which are particularly common in non-convex optimizations [3]. However,
recent advances prove that gradient descent converges to a local minimum, almost surely with
random initialization, by applying the Stable Manifold Theorem from dynamical systems theory
[15]. Visual representations learned by deep convolutional neural networks show excellent perfor-
mance on previously challenging tasks like ImageNet classification. He et al. (2016) [8], proposed
a residual learning framework to ease the training of networks that are substantially deeper than
those used previously by explicitly reformulating the layers as learning residual functions with ref-
erence to the layer inputs, instead of learning unreferenced functions. Krizhevsky et al. (2012) [13]
trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images
in the ImageNet LSVRC-2010 contest into the 1000 different classes and show that a large deep
convolutional neural network is capable of achieving record breaking results on a highly challenging
dataset using purely supervised learning.

Gotal et al. (2017) [6] showed that on the ImageNet dataset, large mini-batches can cause
optimization difficulties, but when these are addressed the trained networks exhibit good general-
ization. Specifically, they demonstrated no loss of accuracy when training with large mini-batch
size up to 8192. To achieve this result, they adopted a linear scaling rule for adjusting learning rates
as a function of mini-batch size and develop a new warm-up scheme that overcomes optimization
challenges early in training. Simonyan et al. (2014) [17] investigated the effect of the convolutional

1



network depth on its accuracy in the large-scale image recognition setting. Their main contribu-
tion is a thorough evaluation of networks of increasing depth using an architecture with very small
convolution filters, which shows that a significant improvement on the prior-art configurations
can be achieved by pushing the depth up to 16–19 layers. Szegedy et al. (2014) [18] proposed a
deep convolutional neural network architecture codenamed Inception, which was responsible for
setting a new state of the art milestone for the image classification, and their results provided
a solid evidence that approximating the expected optimal sparse structure by readily available
dense building blocks is a viable method for improving neural networks for computer vision. The
main advantage of this method is a significant quality gain at a modest increase of computational
requirements as compared to shallower and less wide networks. Zeiler et al. (2013) [22] introduce a
novel visualization technique that gives insight into the function of intermediate feature layers and
the operation of the classifier. Used in a diagnostic role, these visualizations allow us to find model
architectures that outperform Krizhevsky et al [14] on the ImageNet classification benchmark. Xie
et al. (2016) [21] introduced a highly modularized network architecture for image classification.
Our network for final experiments is the one called Dual Path Networks [2], which is a combination
of ResNet [9] and Densenet [10].

Glorot et al. (2010) [5] tries to understand better why standard gradient descent with random
initialization is doing notoriously poorly with deep neural networks, which can help design better
algorithms in the future. Furthermore, their study how activations and gradients vary across layers
and during training, with the idea that training may be more difficult if the singular values of the
Jacobian matrix associated with each layer are far away from 1.

Wilson et al. (2017) [20] manually construct an illustrative binary classification problem where
the data is linearly separable, both GD and SGD achieve zero test error, and AdaGrad [4],
Adam [11], and RMSProp [19] attain test errors arbitrarily close to half. They additionally study
the empirical generalization capability of adaptive methods on several state-of-the-art deep learn-
ing models. They demonstrated that the solutions found by adaptive methods generalize worse
(often significantly worse) than SGD, even when these solutions have better training performance.
These results suggest that practitioners should reconsider the use of adaptive methods to train
neural networks.

Hardt et al. (2016) [7] show that parametric models trained by a stochastic gradient method
(SGM) with few iterations have vanishing generalization error. Applying the results to the convex
case, they provide new insights for why multiple epochs of stochastic gradient methods generalize
well in practice. While in the non-convex case, they give a new interpretation of common practices
in neural networks, and formally show that popular techniques for training large deep models are
indeed stability-promoting.

3 Approach
As we have stated before, it would be hard to identify patterns by just subjectively looking at
mini-batch images. Different individuals would perceive image content differently. In oder to find
more objective patterns, we plan to approach it from the opposite perspective. Here we will first
propose several heuristic metrics, based on which we can rank the training samples. Afterwards,
the whole training dataset with fixed order can be divided into multiple mini-batches. This is
different from the typical training of deep models, as its training examples are shuffled at the very
beginning of each epoch while we will fix the order for later interpretation. Therefore, during
iterations in one epoch the metric values of mini-batches will gradually change. Besides, we will
also evaluate the distance of each mini-batch’s gradient to the full-batch gradient. Then based on
how far away different mini-batches are to the full-batch and their corresponding metric value in
different training phases, certain policies for choosing best mini-batches might be identified. What’s
more, it’s also essential to ensure that the gradient of each mini-batch and full-batch are estimated
based on the same parameter value. As we know, typical deep model training will update the
parameters after each mini-batch, which inevitably corrupts the estimation of gradients for later
mini-batches. It would be important for us to also pay attention to this during training.

3.1 Training Framework
In typical training of deep neural networks, we will run for quite a few epochs, each of which will
go over the whole training samples once. While during each epoch, as normally constrained by the
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computational resources and parameter updating efficiency, training examples are basically divided
into multiple mini-batches. Then for each mini-batch, a forward pass is executed to compute the
loss value of a predefined objective function, which is followed by a backward process for parameter
gradient estimation. Finally, parameters are updated with gradient-based optimizers upon current
parameter values.

However, in our experiments we would want to compare gradients of mini-batches with the
one of the full-batch. This constrains us to calculate the gradient of every mini-batch based on
the exactly same parameter value as the full-batch, i.e., the starting parameter value for each
epoch. Moreover, it’s probably infeasible to place all training examples into memory to estimate
the gradients of the full-batch. As such, we’ll have to estimate it based on the gradients of each
mini-batch.

Suppose we are doing image classification with training samples {xi, yi}Ni=1. Our final objective
function can be formulated as follows:

R(θ) =
1

N

N∑
i=1

L(xi, yi; θ), (1)

in which L stands for the cross entropy loss and θ contains all model parameters. While during
the mini-batch training, if the batch size is set to m, then Eq 1 can be re-arranged as

R(θ) =
1

N

N/m∑
k=1

[
1

m

m∑
i=1

L(xki, yki; θ)

]
, (2)

where xki, yki corresponds to one specific training sample i in batch k. We are abusing notation
usage here for better explanation. Based on this reformulation, if we have already cached the
gradient for each mini-batch k, i.e., ∇k = 1

m

∑m
i=1

∂L(xki,yki;θ)
∂θ , then

∂R(θ)

∂θ
=

1

N

N/m∑
k=1

[m×∇k]. (3)

This should give us the full batch gradient on all training samples. Then we may compare each
mini-batch’s gradient to this and estimate the ‘best’ approximations/similarities based on some
quantitative metrics like euclidean distance or some kinds of norms.

On the other hand, to deal with the comparison based on the same parameter point, we propose
to incorporate another model net_compare during the training, for which our normal training
model is called net_normal. More specifically, at the beginning of each epoch, both net_normal
and net_compare should share the same parameter values. While with the training of each mini-
batch, net_normal would go through forward pass, backward pass, and parameter update steps.
But for this new incorporated model net_compare, it will only experience forward pass and
backward pass for the purpose of estimating the gradient of each mini-batch based exactly on the
starting parameter value of this epoch. As there is no update step, parameter values are always the
same. Moreover, we’ll also cache each mini-batch’s gradient to compute the gradient of full-batch
with our previous strategy. It’s worth noting that we’ll need to save these gradients onto disk, since
caching in memory can still cause out of memory issue. After we have iterated through all the mini-
batches within one epoch, we shall read in all the cached gradients and average them to estimate
the full-batch gradient. Now before we jump to the next epoch, we will then copy the normal
training model’s parameters (net_normal.θ) to this new incorporated model (net_compare).
This makes sure net_compare is always tracking the parameter change during optimization.
Then based on the full-batch gradient, we can calculate the distances of each mini-batch’s gradient
to the one of the full-batch. The distance of each mini-batch with different metric value at different
epochs (training phases) can be visualized for interpretation. Detailed pseudo code is depicted in
Algorithm 1.
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Algorithm 1 Mini-batch and Full-batch Gradient and Distance Calculation
1: Require: training samples X and Y
2: Require: loss function criterion(·,·), two models net_normal, net_compare
3: for e=1→ Epochs do
4: # copy the normal training parameters
5: net_compare.θ = net_normal.θ
6: for k, (inputs, targets) ∈ (X,Y ) do
7: # typical training procedure
8: outputs = net_normal( inputs )
9: loss = criterion( outputs, targets )

10: loss.backward()
11: net_normal.θ.update()
12: # gradient estimation at starting parameter value of each epoch
13: outputs = net_compare( inputs )
14: loss = criterion( outputs, targets )
15: loss.backward()
16: ∇k =net_compare.θ.grad
17: Cache ∇k and inputs on disk
18: end for
19: ∇e = 1

K

∑K
k=1∇k

20: # calculate distance of each mini-batch to full-batch
21: De,k = norm( ∇k −∇e )
22: end for

Meanwhile, it’s essential to define the training phases more rigorously. Modern training process
of deep neural networks would usually follow some learning rate decay strategies. For example,
we may decay the learning rate every 10 epochs or if there is no performance improvement in the
last several epochs. During our exploration, we would define training phases based on epochs with
the same learning rate. Finally, we may investigate on how the distance of mini-batch gradient
to true gradient changes within such training phases. Details of model architecture and training
phase definition will be elaborated in the experiment section.

3.2 Heuristic Metrics
With tens/hundreds of images in one mini-batch, patterns of details are really hard to intuitively
recognize. Among different image categories, people should successfully extract common details
buried in images. Not everyone is a vision expert. Instead of directly approaching this challenge,
we would deal with it based on already know heuristic metrics. More specifically, if gradient of
some mini-batch with certain metric value bear high similarities to the full batch, it implicitly
indicates such metric value for a mini-batch could help build a good mini-batch during training.

3.2.1 Image Intensity

Our first metric scores an image by summing all of the color channels at all positions. For an image
D, with width w and height h, this means that the metric M1 would equal:

M1 =

w∑
i=1

h∑
j=1

3∑
k=1

Di,j,k,

in which Di,j,k stands for the pixel value at position (i, j) within channel k. As such, given that
lower pixel values produce darker colors, and higher pixel values produce lighter colors, images
sorted by this metric could be considered to be ranked by intensity. Thus, darker images, par-
ticularly those with black backgrounds, would be expected to have the lowest scores, and lighter
images, particularly those with white backgrounds, would be expected to have the highest scores.

3.2.2 Color

The second metric we propose scores an image by taking the average color of the entire image.
However, this then raises an interesting question: how does one sort by color at all? Of course, the
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naive attempt at sorting color is to simply sort by the RGB value. Unfortunately, this produces an
unintuitive, noisy and overall poor-looking result. This is due in part to that the RGB color space is
appearing unnaturally and unintuitively to humans. Here, we try to choose a more natural-looking
color space to remedy this problem. HSV (hue, saturation, value) creates a more intuitive color
space by introducing hue, which is the base color, saturation, which makes the base color more or
less intense, and then value, which determines how dark the color is. Thus, for this metric, the
average color of the image is computed, and then converted to the HSV color space, where the
images are then sorted by this value.

3.2.3 Edges

Convolutional Neural Networks (CNNs) contain what are called convolution layers, which form the
core building blocks of the network. In short, convolution layers run filters over the image, which
produce activation maps based on the the filter’s spatial interaction with the pixel intensities.
As such, it is expected that pictures with more “edges” will have stronger interactions with the
convolution layers. We attempt to test this interaction by sorting images based on the “quantity” of
edges in the image. For this third metric, an image D is scored by running a Canny edge detector
over the image, and then summing all of the pixels in the result. In particular:

M3 =

w∑
i=1

h∑
j=1

CANNY(D).

3.2.4 Perceptual Similarity with Average Image

Finally, another metric that we can think of is to compare each image with the average image.
Instead of using the Euclidean distance, we plan to apply deep feature based distance metric,
which seems to provide more details and high-level insights about the image content. Specifically,
the perceptual similarity metric proposed in [23] will be used in our experiments. This metric
has a high correlation with how humans would perceive the images as stated in their paper. In
our procedure, each image and the average image are fed into their model with the AlexNet [14]
backend. Based on their distances, images are then sorted from ones with small distances to large
distances. So during one epoch, our model will go through mini-batches of similar images to ones
that are quite different from the average image.

4 Experiments and Results
During the experiments, we take the CIFAR-10 [12] image classification as our test vision task,
in which we deploy the Dual Path Network [2] as our CNN model. It has 92 layers in total
and is currently the state of the art model for image classification on CIFAR and ImageNet. In
terms of training phases, we define it based on the learning rate decay strategies as stated before.
With a total of 150 epochs, the initial learning rate 0.1 is decayed by 10 after every 50 epochs,
which provides us 3 training phases. Our source code is developed based on the CIFAR-10 image
classification code on https://github.com/kuangliu/pytorch-cifar. We choose a batch size of 256
to accelerate the training.

Four distance files were generated following the algorithm described above, and each file contains
a 150× 195 matrix (150 epochs and 195 mini-batches). Each entry represents the distance of one
mini-batch’s gradient at some epoch to the full-batch’s gradient. In order to obtain better insights
of the results, we generated heat maps to visualize each matrix. One matrix was divided into three
parts: epoch 1–50, epoch 51–100, and epoch 101–150, which constitute our 3 different training
phases. Each sub figure shows the heat map of one training phase. Meanwhile, we employed heat
maps with color schemes to illustrate the distances in matrix. Light squares represent shorter
distance, and dark squares are ones with longer distance. The annotation legend is shown below
each corresponding heat map.

For the results in Figure 1, it displays three heat maps of the distances for metric 1, and the
metric 1 was generated based on image intensity. It’s obvious that in the early training phase,
mini-batches of images with high intensities tend to be much closer to the true gradient. This
implicitly indicates selecting high intensity images in the very beginning of the training. However,
when the model gradually converges, such mini-batches becomes far away from the true gradient.
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(a) Epoch 1 – 50 for Image Intensity Metric

(b) Epoch 51 – 100 for Image Intensity Metric

(c) Epoch 101 – 150 for Image Intensity Metric

Figure 1: Heat maps for the distances of image intensity metric.

In terms of this, for later training phases, we may need to turn to image batches with intermediate
intensities.

Figure 2 shows three heat maps of the distances for metric 2, i.e., the image color metric. As
we can see, during the early training phase, mini-batches with both high and low color metrics are
fairly close to the true gradient. But for later training phases, distances of these mini-batches are
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(a) Epoch 1–50 for Image Color Metric

(b) Epoch 51–100 for Image Color Metric

(c) Epoch 101–150 for Image Color Metric

Figure 2: Heat maps for the distances of image color metric.

gradually increasing.
Figure 3 contains three heat maps of the distances of metric 3 reflecting the total edge magnitude

of an image. It’s pretty clear that in the early phase of training, images with too many or too few
edges can’t provide good estimation of the true gradients. This is intuitive as such images will
either have blank backgrounds or too much details, which could be hard for deep neural networks
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(a) Epoch 1–50 for Edge Metric

(b) Epoch 51–100 for Edge Metric

(c) Epoch 101–150 for Edge Metric

Figure 3: Heat maps for the distances of edge metric.
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to identify. As the training goes on, in later epochs all mini-batches would share approximately
same distances to the true gradient. But as the learning rate is decayed further, the marginal
mini-batches are gradually far away in terms of true gradient estimation.

(a) Epoch 1–50 for Perceptual Similarity Metric

(b) Epoch 51–100 for Perceptual Similarity Metric

(c) Epoch 101–150 for Perceptual Similarity Metric

Figure 4: Heat maps for the distances of perceptual similarity metric.

Finally, Figure 4 shows three heat maps of the distances for metric 4, which is generated
according to the perceptual similarity. The behavior here is kind of similar to metric 1, which is
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show in Figure 1. Mini-batches of images that are very different to the average image should be
quite important in the first 50 epochs. Later on, they are bad at estimating the true gradients.

5 Conclusions
All metrics produce different result based on the different training phases. Recall, the learning rate
is updated twice, to produce a total of three training phases. For the first training phase, metrics
1 and 4 clearly show that the best results during the first training phase come from mini-batches
in the upper quartile. Metrics 2 and 3 have less profound results, but respectively suggest that the
best mini-batches are produced from the outside the middle 80 percent of mini-batches, and inside
the middle 80 percent of data during the first training phase. For the final two training phases,
all four metrics roughly agree that the metric extremes produce poor mini-batches after the first
training phase.

Based on our observations from the results, there are two rough conclusions that can be drawn:

1. We suggest that future researchers can produce slightly faster convergence by removing mini-
batches with extremely low or high intensities, (HSV) color, edges or deep feature image
similarities.

2. We also recommend that future researchers can achieve slightly faster convergence by only
considering mini-batches with high intensity images, and with images that are very distinct
during the first training phase. They can further prune these mini-batches by selecting those
with the highest and lowest color (HSV), and removing those with very few or very many
edges.

During this project, we were hoping to be able to empirically show some conclusive metrics for
selecting the best mini-batch when training convolutional neural networks. Unfortunately, due to
time limits, as well as the limit on access to computational resources, we failed to accomplish the
following:

1. We were only able to produce results that are specific to one CNN architecture and, as such,
we cannot definitively generalize our results to other CNNs.

2. In short, we were hoping to use our observations to manually construct a subset of the “best”
mini-batches and then attempt to leverage our observations to demonstrate that we can
converge slightly faster.

3. We were only able to gather results for 4 different metrics. Unfortunately, the process of
choosing, implementing and running a metric, as well as analyzing the results, is a work-
intensive and time-consuming process.

On the positive side, the shortcomings of this project open nice doorways to potential future
work. In particular, we would be particularly interested in seeing:

1. What are the results for other CNN architectures? (e.g., ResNet, DenseNet)

2. Can manually selecting a subset of best mini-batches allow for faster convergence?

3. Are there other heuristic metrics which can produce more profound results?
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