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Abstract—This paper seeks to use knowledge of a
series of gradient descent variants to infer knowl-
edge about the feature space of natural language
processing problems like accent classification with
the goal of choosing the best optimizer. Popular
optimization techniques are compared based on their
experimental performance in training an efficacious,
automatic, deep-learning based accent classification
system. Although it is quite unanimously thought that
Adam and Nadam outperform SGD during training,
researchers are skeptical about Adam and Nadam’s
superiority at finding optimum model parameters
that generalize well (C. Wilson et al. 2017). This
paper compares mini-batch stochastic gradient de-
scent (SGD), RMSprop, Adaptive moment estimation
(Adam), and Nesterov-accelerated adaptive moment
estimation (Nadam) as optimization methods. The
various techniques were compared to find the op-
timum method for training and validating an accent
classification system based on a one-dimensional
convolutional neural network (1-D CNN). To compare
results, validation-accuracy learning curves were gen-
erated for each network optimized with a different
gradient-based optimization technique.

I. INTRODUCTION

Speech occurs when breath vibrates the vo-
cal tract to produce a noise in conjunction
with the opening and closing of the larynx
and mouth. The human lungs, in combination
with the larynx and mouth, are capable of
producing highly intricate arrays of sound. As
homo sapiens developed language, subsets of
these noises were merged to form combina-
torial segments called syllables. Various lan-
guages, that developed concurrently all over
the Earth, isolated different subsets of noises to
create phonemes and syllables to use for their
verbal communication. Today we refer to these
predispositions towards different articulation
habits and phonemic pronunciations as accents.

Accents suggest a speaker’s national or eth-
nic background, regardless of context or lan-
guage being spoken (P. Watanaprakornkul C. E.
2011). Accent detection machines have nu-
merous applications from improving computer-
based language teaching programs to help-
ing cognitive speech systems interpret nuances
in speech by inferring the speaker’s cultural
background (Tepperman and Narayanan 2005).
Today’s Automatic Speech Recognition (ASR)
systems are adept for native speakers of a
given language, but their performance depreci-
ates significantly for non-native speakers (Ba-
hari et al. 2013). This performance reduction
occurs because non-native speakers preserve
their speaking style and substitute phonemes
from their native language when they encounter
a new, similar phoneme in a second lan-
guage (Bahari et al. 2013).

Many researchers have published work try-
ing to solve this critical preprocessing step
towards the development of a robust, truly
speaker-independent ASR (Zissman et al.
1996). This paper aims to contribute to this
goal by comparing optimization techniques for
an accent classification system based on Mel-
Frequency Cepstral Coefficients (MFCCs) ex-
tracted from raw speech audio data from the
George Mason Speech Accent Archive dataset.
In comparing optimization techniques, this pa-
per provides intuitions on the nature of MFCC-
based feature spaces, the most popular features
for both accent classification and speech recog-
nition systems. Further this paper uses those
intuitions to justify an appropriate gradient-
based optimization technique that generalizes
well.



This paper looks at four different variants
of gradient descent: Mini-batch stochastic gra-
dient descent, RMSprop, Adam, and Nadam.
Each has differences and trade-offs that are
briefly summarized. Subsequently, formulas are
provided for their parameter update rules for
comparison. Lastly, the inferences that can be
drawn about the feature space and the op-
timizer’s habits when a particular optimizer
excels are described.

II. BACKGROUND

A. Mel-Frequency Cepstral Coefficients

Popular research in the field of speech
and accent recognition breaks speech up by
phonemes, single distinct pronunciations, and
identifies where the stress and length of time
spent making those sounds is most empha-
sized (Davis and Mermelstein 1980). The
stressed part of each phoneme or syllable is
referred to as its nucleus (Stuttle 2003). Mel-
Frequency Cepstral Coefficients (MFCC) are a
popular feature extraction method for prosodic
features because they scale an audio signal’s
power spectrum to approximate the human au-
ditory system’s perception of frequency bands.
Introduced by Davis and Mermelstein in the
1980’s, MFCC’s are thought to be a superior
feature extraction method for ASR and accent
classification because their spectral estimates
translate linearly spaced coefficients on a Mel-
Scale to logarithmically spaced frequencies to
create a filterbank that more accurately filters
sound at frequency intervals which humans are
more adept at perceiving (Dave 2013) (Davis
and Mermelstein 1980).

To calculate the MFCC’s, an audio clip is
divided into short frames of 25ms when the
audio samples are thought to be statistically
constant, but still contain enough sample points
to generate a reliable spectral estimate. The
power spectrum is then calculated for each
of the frames and is then passed through a
Mel filterbank. A Mel-spaced filterbank is a
set of triangular filters that isolate parts of
the spectrum and scale them accordingly. Each

vector is mostly zeros, except for in the part of
the spectrum being isolated and scaled. These
scaled values are then summed to create a set of
filterbank energies, one for each vector (Fayek
2016) (Lyons 2012). An example of the fil-
tering process can be seen below in Figure 1.
After taking the Discrete Cosine Transform of
the energies, we have generated our MFCCs.
These coefficients are generated for each of the
25ms frames and are then normalized to be fed
into a classifier (Fayek 2016) (Lyons 2012).

Fig. 1. Diagram demonstrating the Mel-Scale filtering pro-
cess (Lyons 2012).

For this experiment, MFCC features were
extracted from the raw audio using forty Mel-
Scale filters. The sample window used was
25ms wide. The audio quality for all of the
speech clips was 44.1 kHz and the FFT of the
raw audio data was calculated using 512 fast
fourier transform (FFT) bins. Upon calculat-
ing the MFCCs, cepstral mean and variance
normalization was applied before feeding the
feature data to the classifier. A generalized
diagram of the steps taken to calculate the
MFCCs can be seen below in Figure 2.

III. PROBLEM FORMULATION

There are numerous challenges when choos-
ing a good optimization technique and too
often a generic optimizer is chosen without
understanding how or if it will be efficient for
the feature space for a given deep learning
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Fig. 2. Diagram demonstrating the steps for calculating
MFCCs (Lutter 2014).

problem. For example, an optimum learning
rate is necessary. Too small of a step size will
result in an excessive number of iterations to
converge to the minimum of a given feature
space. Too large a step size will result in
overstepping and possibly compromising con-
vergence guarantees (Ruder 2016).

Learning rate schedules, i.e. annealing the
learning rate during training at a prede-
fined rate, are employed to adjust the learn-
ing rate during training to take incrementally
smaller steps as the minimum value is ap-
proached to guarantee convergence; however,
these schedules are unable to adapt to a feature
space’s characteristics and will apply the same
changes in parameter updates regardless of
sparsity (Ruder 2016). Further, when feature
spaces are non-convex, as is likely in high-
dimensional feature spaces, optimizers can get
trapped in suboptimal local minima, like saddle
points (Dauphin et al. 2014).

This paper introduces a series of gradient
descent variants that have adaptive learning
schedules: learning schedules that infer knowl-
edge about the feature space of natural lan-
guage processing problems like accent classi-
fication, and take optimal steps to converge in
the fewest number of iterations. It has become
default to employ these techniques because
of their proven improvements on convergence
to optimum training parameters. Recently, re-
searchers are beginning to scrutinize these tech-
niques for their ability to tune model parame-
ters to the noise in a given dataset and therefore
not generalize well to data dissimilar from

the training dataset (C. Wilson et al. 2017).
To combat these issues, this paper looks to
compare some of the most popular optimization
techniques to find the best optimizer that gen-
eralizes well for natural language processing
problems like the accent classification problem.

A. Vanilla Gradient Descent
Gradient descent is the most popular first-

order iterative optimization algorithm for find-
ing the minimum of an objective function,
J(θ).

Objective Function: minJ(θ), θ ∈ Rd

θt+1 = θt − η · ∇θJ(θt)

In the case of deep learning applications,
network weights that connect layers of a deep
neural network are updated according to a
minimized cross-entropy loss function. Using
backpropagation, the gradient of the loss func-
tion for the network can be calculated. Gradient
descent, or the method of steepest descent,
updates the network parameters by taking a
”step” in the negative direction of the calcu-
lated gradient for all training samples, −∇θ,
towards the minimum of the feature space. This
step factor, η, is referred to as the learning
rate. Vanilla gradient descent can often be slow
to converge and intractable for large datasets
because the gradient of the loss function with
respect to the entire dataset must be calculated
for each iterate of parameter updates (Ruder
2016).

The gradient descent variants being con-
sidered in this paper are mini-batch stochas-
tic gradient descent, RMSprop, Adam, and
Nadam. They improve upon the vanilla gradi-
ent descent architecture in different ways and
incur additional costs such as memory usage
and additional computations. This paper judges
these variants solely based on their generaliza-
tion error, i.e. validation-accuracy. Validation-
accuracy is the only metric being considered in
this paper because it is well-established that the
improvements that Nadam offers over SGD like
Nesterov-accelerated momentum estimates will
improve the training accuracy of the model: at
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times to a fault. Researchers are finding that
SGD and other optimizers can actually reach
optimum points that generalize better because
they don’t tune their models based on the noise
specific to the training dataset. Instead SGD
can tune a model that focuses solely on the
important aspects of the features that generalize
better to outside data.

B. Mini-Batch Stochastic Gradient Descent
θt+1 = θt − η · ∇θJ(θ;x

(i:i+n); y(i:i+n))

Mini-batch stochastic gradient descent
(SGD) improves upon vanilla gradient descent
by performing an update every mini-batch
of n training samples. Additionally, instead
of calculating the gradient with respect
to the entire dataset, the gradient is only
calculated with respect to the mini-batch
of n samples. This reduces the number
of parameter updates as compared to pure
stochastic gradient descent which leads to
more stable convergence. Further, mini-batch
SGD retains all of the benefits of pure SGD by
still updating incrementally and not relying on
calculating the gradient for the entire dataset
to reduce the overhead of redundant gradient
computations on large batch sizes [CITE].

C. RMSprop
gt = ∇θtJ(θt)

E[g2]t = 0.9E[g2]t−1 + 0.1g2t
θt+1 = θt −

η√
E[g2]t + ε

gt

RMSprop is an adaptive learning method that
divides the learning rate by an exponentially
decaying average of squared gradients. Instead
of storing a window of, w, previous squared
gradients like Adagrad, RMSprop stores the
sum of all previous gradients recursively de-
fined as a decaying average of all previous
gradients squared. This improves upon the
memory usage of Adagrad by only storing one
gradient estimate (Ruder 2016).

D. Adam
m̂t =

mt

1− βt1
, v̂t =

vt
1− βt2

θt+1 = θt −
η√

v̂t + ε
m̂t

Adam, or Adaptive Moment Estimation, is
also an adaptive learning method. Similar to
RMSprop, Adam keeps an exponentially de-
caying average of past gradients, mt. vt and mt

are estimates of the first moment (i.e. mean)
and the second moment (i.e. the uncentered
variance) of the gradients respectively. Typ-
ically, the first and second moment vectors
are initialized to zero, however this creates a
bias towards zero, especially during initial time
steps and when the decay rates are small (i.e.
β1 and β2 are close to 1). To counteract this
issue, the bias-corrected moment estimations,
v̂t and m̂t, are calculated and used to update
the network parameters (Ruder 2016) (Kingma
and Ba 2014).

E. Nadam
mt = β1mt−1 + (1− β1)gt

m̂t =
mt

1− βt1
θt+1 = θt −

η√
v̂t + ε

(β1m̂t +
(1− β1)gt
1− βt1

)

Nadam, or Nesterov-accelerated Adaptive
Moment Estimation, combines Nesterov-
accelerated gradient (NAG) descent and Adam.
NAG improves upon vanilla momentum by
giving it the prescience to not blindly follow
the curvature of the feature space but instead
slow down as it approaches the minima. NAG
still uses the momentum term to update the
parameters, but instead of calculating the
gradient with respect to the current iterates
parameters, the previous step’s parameters
are used. Therefore, instead of updating the
parameters based on a current approximation
of the future parameters, the parameters
are updated on a past prediction of the
current parameters. After taking a step in
the direction of the current approximated
parameters, the gradient with respect to the
current parameters is used to perform a
correction step. The anticipatory update results
in increased responsiveness and prevents the
parameters from overstepping in the case of
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minima located at the basin of steep valleys
in the feature space. Nadam incorporates
these improvements to vanilla momentum by
updating the parameters with the momentum
step before computing the gradient. Instead
of using the previous update’s momentum
vector, Nadam uses the current momentum
vector to look ahead and directly update the
parameters (Ruder 2016) (Goh 2017).

IV. IMPLEMENTATION

A. GMU Speech Accent Archive Dataset

This paper compares the experimental per-
formance in training an efficacious, automatic,
machine-learning based accent classification
system for the Arabic, Mandarin Chinese, En-
glish, and Spanish languages. To develop this
accent classification system, speech data was
pulled from the Speech Accent Archive dataset
from George Mason University. The archive
is composed of MP3 audio clips labeled with
phonetic transcriptions from speakers with over
one-hundred different national and ethnic ac-
cents. All of the recordings are of the speakers
saying one common English paragraph that
includes a number of phonetically ambigu-
ous words for people with different accents.
Because the goal of an accent identification
model is to detect their pronunciation tenden-
cies, regardless of the words being spoken, the
language does not influence the results in a bias
towards English pronunciations.

B. One-dimensional Convolutional Neural
Network

The model being optimized in this paper
is a one-dimensional convolutional neural net-
work (1-D CNN). For the accent classification
problem, the rate of speech is not an issue.
Instead it is the sharp transitions in human-
audible frequencies that must be learned for
accent classificationm making a 1-D CNN an
appropriate choice. The model used was com-
prised of nine convolutional layers, each with
batch normalization and ten percent drop-out to
combat over-fitting. Max pooling was applied

to all but the output of the first layer. Lastly,
an affine layer was appended to the end of the
network.

This model was built using the Keras python
libraries with a Tensorflow backend. All cod-
ing for this project was done in interactive
python (IPython or Jupyter Notebooks). After
downloading the audio data from the GMU
archive servers, the archive data was split into
two distinct datasets, a training/testing dataset
and a validation set. Each dataset contained
an equal proportion of audio clips from each
language and were shuffled to create a random
distribution for the classifier. The audio clips
were padded with trailing zeros to fit each clip
into a standard size array and the datasets were
pickled for easier access. Due to the relatively
small available dataset, ninety percent of the
audio clips were used for the training/testing
dataset while the remaining ten percent were
used for the validation set.

Finally, MFCC accent features were ex-
tracted from the raw audio files and fed into
the 1-D CNN for training or for validation.
As the classifier was incrementally trained, a
learning curve was generated by predicting
values the model hadn’t seen during training
from the validation set. These validation scores
were recorded and used to generate learning
curve graphs to evaluate the performance of the
model at different training epochs for each of
the accent feature vectors.

V. RESULTS

The results generated from running the ex-
periments ranged greatly from promising to
lackluster. Although all of the optimization
techniques compared in this paper are popular
for tuning a deep neural network used for ASR
and accent classification, the experiments were
unable to unanimously confirm these results.
Unfortunately, inconclusive results were col-
lected due to computing constraints. Prelimi-
nary results were collected and are displayed
below. The following results in Figure 3 show
a comparison of validation accuracies for the
same 1-D CNN model with different optimizers

5



being used. The results are sporadic despite a
general trend towards improving generalization
when training the model using more epochs.

Fig. 3. Graph comparing optimizer’s effect on validation
accuracy.

The most successful optimization method
was mini-batch SGD, with a max validation
score after twenty epochs of 87.22%. Given the
upward trend of the data, it is suspected that
the model would have continued to increase
its cross-validation scores if more computing
time were available to perform more training
epochs. The second most successful optimiza-
tion method was Adam, with a max validation
score of 86.66%. The third most successful
optimization method was Nadam, with a val-
idation score of 75.83% after twenty epochs.
Nadam was able to run for ten extra epochs
as compared to SGD and Adam and was able
to achieve a max validation score of 97.22%.
The least successful optimization method after
running for twenty epochs was RMSprop, with
validation score of 57.77%. RMSprop also had
extra computation time and was allowed to run
for ten additional epochs, eventually achieving
a max validation score of 77.49%.

VI. FUTURE WORK

In continuation of this project, future work
will focus on improving the model and achiev-
ing increasingly better generalization. To do
this, the optimization techniques employed in
this paper to learn more about the feature space

of accent MFCC data will be used to en-
sure that the most appropriate gradient descent
variant is being utilized. After the model has
been scrutinized and is confidently performing
near its optimum potential with the George
Mason Speech Accent Archive dataset, more
data will be sought out. Data was limited for
this experiment. In total, only 400 audio clips
were available from the GMU Speech Accent
Archive to ensure an equal distribution of clips
from each of the four languages. This limitation
could contribute to potential overfitting issues
when trying to generalize the classifier to more
languages or data outside of the GMU Accent
Archive dataset. If the experiment were to be
repeated, a different dataset would be used, or
more data would be collected to contribute to
the archive.

After improving results with a set of standard
datasets, future work will be done to generalize
the model to more raw data sources with a
wider range of more pragmatic content. To do
this, more focus will be placed on speech seg-
mentation to isolate the nucleus of syllables and
phonemes to more accurately capture accent-
specific prosodic features. The length of these
variable segments and the amount of pause be-
tween them are two features that were unable to
be represented in the current model because a
fixed length window was used, but are thought
to be exceptional accent indicators (Tepper-
man and Narayanan 2005). At a minimum,
these features should be able to suggest to
a classifier if the speaker is native or non-
native to the language being spoken (Tepper-
man and Narayanan 2005). Additionally, semi-
supervised models might be relevant to this
problem to better utilize the large amount of
unlabeled speech data available on the internet.

VII. CONCLUSION

This paper used knowledge of a series of gra-
dient descent variants to infer knowledge about
the feature space of MFCC-based accent data
with the goal of choosing the best optimizer.
Inspired by researchers who are skeptical about
the overall performance of superior optimizing
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techniques like Adam and Nadam, this pa-
per compared optimizers solely based on their
ability to converge to model parameters that
generalized well. After collecting preliminary
results, mini-batch stochastic gradient descent
outperformed RMSprop, Adam, and Nadam
in validating an accent classification system
based on a one-dimensional convolutional neu-
ral network (1-D CNN). Going forward, more
conclusive results will be collected and a more
robust model will be developed and optimized
to solve the accent classification problem in
working towards a truly speaker-independent
automatic speech recognition system.
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