
Self-Selecting Neural Networks

Ryan Kingery, Chidubem Arachie, Ahmadreza Azizi, and Ali Taleb Zadeh Kasgari
Virginia Tech, Blacksburg, VA

Emails:{rkingery,achid17,reza321,alitk}@vt.edu.

Abstract—In this proposal we describe the idea and
motivation behind a greedy-based approach to neural
network architecture selection that we call self-selecting
neural networks. We explore various ways of doing neural
net model selection via this approach on multilayer per-
ceptrons with a single hidden layer, observing that it can in
fact be feasible and efficient to do so via neuron addition
and deletion in the hidden layer, though more work must
be done before it becomes viable.

I. INTRODUCTION

In recent years, the surprising success of deep
learning has made many problems that were thought
to be hard to solve using a computer much more
tractable. The most remarkable successes thus far
have been in the fields of computer vision, speech,
natural language processing, and medicine. In these
fields, deep learning techniques have started to
compete with humans at performing many com-
mon tasks well, including image recognition, speech
translation, and medical diagnosis.

The backbone of deep learning is the neural
network. Neural networks are complex hierarchi-
cal models that come in many flavors, and can
be used for just about any machine learning task
conceivable. It is this complexity and versatility,
however, that often makes them quite difficult to
train. Relative to other machine learning models,
neural networks have a huge number of hyperpa-
rameters that must be tuned in advance.

Some of the more crucial and annoying hyperpa-
rameters to tune deal with the network architecture.
Depending on the specific implementation, such
architecture-related hyperparameters may include
the number of hidden layers, number of units per
layer, types for each layer (e.g. dense, convolutional,
max pooling, LSTM), types of activation functions,
filter sizes, and, of course, the order in which each
of these things should be put together within the
neural network. Clearly, expecting practitioners to

efficiently choose which network architecture to use
given a particular situation is asking a lot. It often
requires them to have a great deal of domain spe-
cific expertise on top of experience training neural
networks.

The goal of this research is to try to address this
neural architecture selection problem. Namely, our
goal is to create a routine for performing model
selection on a class of neural networks. To do so we
initially focus on performing model selection on the
class of multilayer perceptron (MLP) models with
a single hidden layer, leaving further extensions for
future work.

II. BACKGROUND

A. Basics
The L-layer MLP can be expressed mathemat-

ically as an equation consisting of L groups of
simple functional compositions. Each layer l con-
sists of a composition of some activation function
σl with an affine function of the activation vector
a(l−1) ∈ Rnl−1 from the previous layer,

a(l) = σl(W
(l)a(l−1) + b(l)),

where a(0) = x is defined to be the input features.
The goal is to set up this series of non-linear

transformations such that for any input vector x ∈
Rn0 of features and output vector y ∈ RnL of labels
one gets a new vector

ŷ = σL(W (L)σl−1(· · ·σ1(W (1)x+ b(1)) · · ·) + b(L)),

such that ŷ ≈ y. To do so the parameters

θ = {W (1), · · · ,W (L), b(1), · · · , b(L)}
are estimated by minimizing the empirical risk

R̂(θ) =
1

N

N∑
i=1

L(yi, ŷ(xi|θ))

over N training example pairs (xi, yi).

B. Model Selection

The task of model selection is to find a “best”
model from some class of models using an efficient
search algorithm. For our purposes, we define the
best model as the model M∗ ∈ M yielding the
lowest overall empirical risk R̂(θ|M) in a fixed,
finite number of iterations, over all θ ∈ Θ and all
models M ∈ M. That is, if it exists, we wish to
find the model

M∗ = argmin
M∈M

(
min
θ∈Θ

R̂(θ|M)

)
,

In the case we examine in this paper, the goal
is to find the best MLP from the model class of
all MLPs with a single hidden layer. Assuming
the activation functions, parameter initializations,
and other hyperparameters have been specified, our
neural architecture selection problem reduces to
finding the optimal number n∗ of neurons in the
hidden layer, i.e. to find

n∗ = argmin
n∈N

(
min
θ∈Θ

R̂(θ|n)

)
.

For computational convenience, we impose a maxi-
mum size nmax for the hidden layer, thus constrain-
ing n ≤ nmax.

III. RELATED WORK

A. General Approaches

An older idea that has the affect of deleting
neurons at training-time is LASSO [1]. The idea
is to instead train by minimizing the regularized
empirical risk

R̂(θ) + λ||θ||1,

where ||θ||1 is the flattened vector L1 norm of
all parameters in the model and λ > 0 is a hy-
perparameter that determines the tradeoff between
model performance and model simplicity. One of
the basic facts of LASSO is that it tends to shrink
the parameters in a network to zero, effectively
killing off neurons with smaller activations, though
not explicitly removing them from the model.

Other techniques that have been tried in re-
cent years include reinforcement learning based
approaches [2], where the idea is to change the
network by attempting to maximize some reward

function, e.g. a function of how “happy” we are at
the rate the loss is decreasing during training, and
evolutionary approaches, where the idea is to allow
the network evolve according to the parameters
of some genetic algorithm. While these methods
have been getting increasing focus lately, as of
the date this was written such approaches are still
largely impractical due to slower performance and
difficulty to successfully implement without great
computational resources.

B. Greedy Approaches

The inspiration for this work was inspired largely
by [3]. In that paper the author chooses to focus on
greedy-based model selection for simple recurrent
neural networks (RNNs). In his model, the RNN is
trained at each step using backpropagation-through-
time followed by an Adam update, and then at each
update the add-delete criteria are applied. The neural
deletion is decided by minimizing the expected loss
along with the L1 norm of the outgoing weights for
each neuron, which, similar to LASSO will tend to
shrink the weights to zero, and then deleting neurons
from the network that fall below some pre-defined
deletion threshold. The neural addition is decided
mainly by probability. With a certain probability, a
neuron is added to the hidden layer provided the
pre-specified max hidden layer size isn’t exceeded.
A simplified version of this algorithm is shown in
algorithm 1.

Since our method was largely based on [3], we
decided to put considerable effort up front into
being able to replicate the author’s results. He chose
to test the above algorithm by using an RNN to
train a character prediction model on the alphabet
a,b,),(. The goal is to predict what the next
character will be, given a simple input sequence of
characters like (ab)(ab)(ababab).... Start-
ing with an initial hidden layer size of n = 1,
and hyperparameters padd = 0.01, pdel = 0.05, and
δ = 0.03, we were able to reproduce his results,
though not easily.

We can see from our own figure 2 that the number
of neurons in the hidden layer of the RNN manages
to stabilize to around 40 neurons after 100,000 iter-
ations. Interestingly, we can also see from our own
figure 2 that training actually performs better for
the variable-size model than for the usual fixed-size

Algorithm 1 Simplified Miconi addition-deletion of
neurons

1: procedure ADD DELETE(W, b, padd, pdel, δ,M)
2: n = # neurons in hidden layer
3: for i = 1, · · · , n do
4: wi = outgoing weights of neuron i
5: end for
6: for each neuron i with ||wi||1 ≤ δ do
7: if rand() < pdel then
8: Delete neuron i
9: n = n− 1

10: end if
11: end for
12: if n < M and rand() < padd then
13: Add neuron j with ||wj||1 ≥ δ, bj = 0
14: n = n+ 1
15: end if
16: Update W and b accordingly
17: return W, b
18: end procedure

Fig. 1. Plot of training for the character prediction task performed
in [3]. We can see the number of neurons stabilizes around 40.

models. Though the author didn’t mention it, it turns
out that his algorithm is highly sensitive to its choice
of hyperparameters. This hyperparameter sensitivity,
as well as the large number of hyperparameters
needed to perform the model selection, is something
we made it a point to address in our own method
below.

IV. METHOD

Adapting the approach to [3], we decided to
largely preserve the deletion step in algorithm 1,
but change the addition step to take into account

Fig. 2. Comparison of the variable-sized RNN model from [3] against
several fixed sizes N . The plot qualitatively shows that the variable-
sized network performs better on the character prediction task.

training behavior in the loss function. The deletion
step is defined in algorithm 2, and the addition step
is defined in algorithm 3.

Algorithm 2 Delete neurons in hidden layer
1: procedure DELETE(W, b, p, δ)
2: n = # neurons in hidden layer
3: for i = 1, · · · , n do
4: wi = outgoing weights of neuron i
5: end for
6: for each neuron i with ||wi||1 ≤ δ do
7: if rand() < p then
8: Delete neuron i
9: end if

10: end for
11: Update W and b accordingly
12: return W, b
13: end procedure

With the deletion step, we simply delete neurons
in the hidden layer with near-zero outgoing weights,
defined as weights with absolute value below some
threshold δ, with some probability p. The rational
for doing this is that such a neuron is effectively
dead and not contributing to improving training,
as its near-zero output will propagate to all future
layers as well.

With the addition step, we check whether the
training loss has stalled, and add a new neuron to the
hidden layer with some probability when we decide
training has stalled.

Algorithm 3 Add neurons in hidden layer
1: procedure ADD(W, b, losses, p, ε, τ, δ,M)
2: n = # neurons in hidden layer
3: stalled = FALSE
4: if Last τ losses are within ε window then
5: stalled = TRUE
6: end if
7: if stalled and n < M and rand() < p then
8: Add neuron j s.t. ||wj||1 ≥ δ, bj = 0
9: end if

10: Update W and b accordingly
11: return W, b
12: end procedure

V. EXPERIMENTS

All code used to perform the following exper-
iments is available on GitHub. Due to the fact
that the above algorithms will tend to dynamically
resize the parameters in the network we found it
easier initially to implement all neural networks
used in only base Python and NumPy. Due to the
general lack of performance-boosting optimizations
from doing this we largely confine the analysis in
this section of the above algorithms to very simple
datasets.

We focus here on a simple binary classifica-
tion task, a simple regression task, and a moder-
ate multiclass classification task. The hidden layer
activation functions are all rectified linear units
ReLU(z) = max(0, z), and the output activation
functions and losses are determined by the task at
hand. For simplicity, full-batch gradient descent is
used to optimize each of the objectives. All tasks
initialize the hidden layer size to n = 1 and allow
the networks grow with training.

For the binary classification task, we sampled
5000 points from a 2-dimensional Gaussian mixture
model with 10 centroids each with variance 0.01,
with 5 centroids assigned label 0 and the other 5
centroids assigned label 1. A plot of the dataset is
shown in figure 3. We can see the results of training
in figure 4. Observe that the network stabilized to 4
neurons over 10,000 iterations, which turned out to
be the minimum number required to achieve 100%
accuracy on the test set. We can also observe a
characteristic behavior of dynamic training: when

Fig. 3. Plot of the Gaussian mixture model data along with the
decision boundary learned by the variable-sized model.

Fig. 4. Plot of (rescaled) validation loss and number of neurons over
10000 iterations of training an MLP on Gaussian mixture data. The
number of neurons in the hidden layer is initialized at 1 and stabilizes
at 4 neurons. The validation loss also decreases substantially as new
neurons are added.

the training stalls and enough new neurons are
added, training eventually drops again, in sort of
an S shape. This is one of the main points of this
approach. When training has stalled, add neurons to
get it un-stalled.

For the regression task, we sampled 1000 points
from the simple quadratic function y = 10x2−3+ε,
where ε ∼ N (0, 100). A plot of the dataset and the
learned function approximation is shown in figure
5, and the results of training in figure 6. We can
again see that the network does a pretty good job
of fitting the data, with R2 = 0.997. And while the
number of neurons did increase, it did not manage

https://github.com/rkingery/self_selecting_neural_nets

Fig. 5. Plot of the sampled regression data with mean y = 10x2−3.

Fig. 6. Plot of (rescaled) validation loss and number of neurons over
20000 iterations of training a regression MLP on y = 10x2 − 3.

to stabilize over 10,000 iterations for some reason.
One possible reason for this is that the use of the
squared loss results in a much sharper loss curve,
which is much harder to measure stalling on.

For the multiclass classification task, we some-
what boldly attempted to perform classification on
the MNIST dataset. Unfortunately, the full MNIST
dataset proved much too ambitious for the first
version of our code, so we instead trained on 5000
randomly-sampled images from the dataset. The
results of this training is shown in figure 7. As one
might expect, the high-dimensional feature space
of a 28 × 28 image requires many more neurons
to learn the underlying patterns. This is shown in
our selection procedure by the fact that the network
quickly grows to the max hidden layer size of 200 at
around 4000 iterations, and stays there. One would
assume that were the max hidden layer size higher

Fig. 7. Plot of (rescaled) validation loss and number of neurons over
10000 iterations of training MNIST, down-sampled to 5000. Note the
max hidden size of 200 is reached here.

then the model would need many more neurons to
train well on the data.

VI. CONCLUSIONS AND FUTURE WORK

In conclusion, our greedy-based approach could
prove viable as a form of neural architecture se-
lection, though much has to be done to make it
practical. For one, support for multiple layers needs
to be added. This can be done, for example, by
initializing a new layer once the max hidden size is
reached, or perhaps by adding a new layer at each
step with a certain small probability. Support for
different types of neural networks other than MLPs
would also be of value. For example, one could try
this approach with convolutional neural networks by
adding filters instead of neurons, or with resnets by
adding resnet blocks instead of neurons.

Before any of this can be done, however, the code
needs to be optimized for performance so that it
can scale better to larger datasets. One immediate
task will be to refactor the code using PyTorch and
TensorFlow. Once this is complete more ambitious
classification and regression tasks can be attempted.

On the theoretical side, more work needs to be
done to analyze how well such a greedy-based
model selection approach does in finding the op-
timal model for training over a fixed number of
iterations. We suspect there to be possible local op-
tima here to contend with, making this a somewhat
challenging task. We’ve observed, for instance, that
the number of neurons one initializes the hidden
layer with does affect what number the network

finally stabilizes to. Such hurdles will have to be
addressed before this technique can become a viable
form of neural architecture selection.

REFERENCES

[1] R. Tibshirani, “Regression Shrinkage and Selection Via the
Lasso,” Journal of the Royal Statistical Society, Series B, vol. 58,
pp. 267–288, 1994.

[2] B. Zoph and Q. V. Le, “Neural Architecture Search with
Reinforcement Learning,” arXiv:1611.01578 [cs], Nov 2016,
arXiv: 1611.01578. [Online]. Available: http://arxiv.org/abs/
1611.01578

[3] “Neural networks with differentiable structure.” [Online].
Available: http://arxiv.org/abs/1606.06216

[4] W. Pan, H. Dong, and Y. Guo, “DropNeuron: Simplifying
the Structure of Deep Neural Networks,” arXiv:1606.07326
[cs, stat], Jun 2016, arXiv: 1606.07326. [Online]. Available:
http://arxiv.org/abs/1606.07326

http://statweb.stanford.edu/~tibs/lasso/lasso.pdf
http://statweb.stanford.edu/~tibs/lasso/lasso.pdf
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1611.01578
http://arxiv.org/abs/1606.06216
http://arxiv.org/abs/1606.06216
http://arxiv.org/abs/1606.07326
http://arxiv.org/abs/1606.07326
http://arxiv.org/abs/1606.07326

	Introduction
	Background
	Basics
	Model Selection

	Related Work
	General Approaches
	Greedy Approaches

	Method
	Experiments
	Conclusions and Future Work
	References

