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TCNN: a Tensor Convolutional Neuro-Network for
big data anomaly detection

Xiaolong Wu

Abstract—Big Data consists of multidimensional, multi-modal
datasets that are so huge and complex that require new methods
to process and these data. Nowadays, network data expand at a
huge speed. And consequential network traffic anomaly detection,
an important part of network security, appears some constrains
with existing methods such as these systems ignore the relation-
ship value between different attributes of network traffic which
incur less accuracy problem; Lots of memory and computational
cost, which hinders them from running in relatively low-end
smart devices such as smart phones. Motivated by this, this work
proposes a new method named Tensor Convolutional Neuro-
Network (TCNN) to resolve network traffic anomaly detection
problem which utilize the tensor decomposition technology to
decompose the convolution layer and reduce the memory cost.
What’s more, consider the performance requirement of big data
process, we improve the CP decomposition algorithm, which
is one of the most critical parts for tensor decomposition
performance. The experiment results show our improvement
achieve better performance as well as comparable accuracy.

Index Terms—Anomaly detection, Tensor Factorization, CP
decomposition, Parallel computing

I. INTRODUCTION

AS the development of sciences and economics, magnani-
mous, dynamic, and complicated structured data become

universal. Big Data consists of multidimensional, multi-modal
datasets that are so huge and complex that they cannot be
easily stored or processed by using standard computers. Except
”5V” (High Volume, Velocity, Variety, Veracity, Value) char-
acteristics of big data, real applications also have properties of
high complexity, that is data are constructed from multi-source
and multi-aspect, and the irregularity and incompleteness of
data, Variety - different forms of data, Veracity - uncertainty
of data, and Velocity - analysis of streaming data, comprise
the challenges ahead of us (Source from [4]).

Fig. 1. 5V characteristics of big data
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Many problems in computational neuroscience, neuroin-
formatics, pattern/image recognition, signal processing and
machine learning generate massive amounts of multidimen-
sional data with multiple aspects and high dimensionality.
Network traffic anomaly detection constitutes an important
part of network security. However, existing network traffic
anomaly detection methods all ignore the relationship between
multidimensional data. For example, anomaly detection system
SPADE [7], ADAM [1], or NIDES [6] models normal network
traffic, usually the distribution of IP addresses and ports, and
in fact use the matrix as the input with attribute in one
dimension and record as the other dimension, which ignore
the relationship value between different attribute.

On one hand, traditional matrices and vectors are not enough
to represent this complex property, tensors as new approach
has obtained broad abstraction from both academic and in-
dustrial areas. Multi-linear tensor-based data analysis becomes
a research hotspot in recent years. One of the emerging
technologies is tensor decomposition; CP decomposition is the
most common used tensor decomposition methods.

On the other hand, this work proposes to use Convolutional
neural networks (CNNs) to resolve network traffic anomaly
detection problem. In deep convolutional neural networks,
the output of each layer is a tensor, but the barrier here
is that CNNs will require high amounts of memory and
computational resources, which are unfortunately hard to be
met by small-sized smart devices such as mobile phones .
In order to tackle this problem, we propose to decompose
covolutional layers of CNNs by using tensor decomposition.
What’s more, consider the performance requirement of big
data process, we improve the CP decomposition algorithm,
which is one of the most critical parts for tensor decomposition
performance. We named our new convolutional neural network
framework as TCNN (Tensor Convolutional Neural Network).

Several recent papers apply decompositions for either ini-
tialization [17] or post-training [13]. More recently, Anima’s
group make an attempt that apply tensor contractions as a
generic layer directly on the activations or weights of a deep
neural network and to train the resulting network end to-
end [11]. Different from this work, our work decomposes the
convolution layer instead of fully connected layer.

Considering the computation time of CP decomposition
is also very important for the training procedure of tensor
convolutional neural networks, we identify the bottleneck of
CP composition with Alternating Least Squares method (CP-
ALS) and propose an improved algorithm and parallel the new
algorithm to further speed up the performance.

The main contributions are as follows:
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Fig. 2. (a) A third-order sparse tensor; (b) Tensor network diagram for a
third-order tensor.

• we use CP decomposition algorithm to decompose the
convolution layer of CNN in order to reduce of spacial
overhead.

• We introduce a CP decomposition algorithm with Alter-
nating Least Squares method (CP-ALS) and identify its
bottleneck (MTTKRP operation) and further parallel it.

• We models the anomaly detection in network traffic using
3D multidimensional dataset and propose a framework
named TCNN to do the network traffic anomaly de-
tection, which consider the relationship value between
different attributes of network traffic and reduce memory
overhead as well as performance overhead.

The remainder of this paper is organized as follows. Section
2 describes some basic knowledge of tensors and tensor
decomposition. Using CP decomposition to decompose the
convolution layer of CNNs is shown in section 3. Section
4 identify the bottleneck of CP decomposition and Section
5 introduces our improved CP decomposition algorithm. We
give our experimental results in section 6, and conclude this
paper in section 7.

II. BACKGROUND

We first introduce the essential tensor notation and oper-
ations for describing our algorithms. Several examples and
definitions are drawn from the excellent overview by Kolda
and Bader [10].

A. Tensors and Operations

For our purposes a sparse tensor is defined as a multi-way
sparse array, illustrated graphically in Fig. 3, and denoted
by a bold capital Calligraphic letter, e.g., X ∈ RI×J×K .
Figure 3(b) shows the tensor network diagram [5] of a third-
order tensor, where each line represents a mode and their size.
The order of a tensor is its number of dimensions or modes,
which in this example is 3, whereas matrices and vectors have
order 2 and 1 respectively. Matrices are denoted by boldface
capital letters, e.g., A ∈ RI×J , and vectors by boldface
lowercase letters, e.g., x. The scalar elements of a tensor are
denoted by lowercase letters, xijk is the (i, j, k) element of X .
Often, a tensor needs to be reordered into a matrix, which is
called matricization or unfolding. Tensor X ∈ RI1×I2×···×IN

can be matricized to matrix X(n) ∈ RIn×I1...In−1In+1...IN .
The Kronecker product of two tensors X ∈ RI1×I2×···×IN

and Y ∈ RJ1×J2×···×JN is denoted by Z = X ⊗ Y ∈
RI1J1×I2J2×···×INJN . The Khatri-Rao product is the “match-
ing columnwise” Kronecker product between two matrices.

… …
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Activation Map (h)Filter (W)

Input region (X)

-1 1 1
1 0 1
1 -1 1

2 1 4 1
3 6 2
4 3 1 -2
2 1 3 1

1

2
2 0 1

1 0
0 0 0

0
0
0

0 0 0 0
0
2
1

0 0
0
0
0

1 1 1 2
0 0 0 0 0 0
0 0

(b) A 2-D convolutional operation

Fig. 3. CNN illustration.

Given matrices A ∈ RI×R and B ∈ RJ×R, their Khatri-Rao
product is denoted by C = A�B ∈ RIJ×R.

The Hadamard product is an element-wise product. Given
two matrices A,B ∈ RI×R, Hadamard product is denoted by
C = A ∗B, with each entry computed by

ci,r = ai,rbi,r. (1)

To simply our algorithm below, we extend the Hadamard
product to an operation between a tensor and a matrix and
introduce a reduction on one of the matrix modes. We call
this operation Tensor-Matrix Hadamard Reduction product
(TMHR). Given a tensor X ∈ RI1×I2×···×IN−1×IN and M ∈
RIN−1×IN , the TMHR product is denoted by

z(i1, . . . , iN−2, :) =

IN−1∑

iN−1=1

X(i1, . . . , iN−2, :, :) ∗M. (2)

By fixing i1, . . . , iN−2, each matrix X(i1, . . . , iN−2, :, :) ∈
RIN−1×IN undergoes a Hadamard product with matrix M.
Then we sum-reduce over the first matrix mode (mode-
IN−1). This equation generates a (N − 1)th-order tensor
Z ∈ RI1×I2×···×IN−2×IN . Note that TMHR only operates over
the nonzero entries of a sparse tensor.

The Matriced Tensor Times Khatri-Rao product (MT-
TKRP) is a core operation of CPD (introduced later). For a
N th-order tensor, its formulation on mode-n is:

MA
(n) ← X(n)

(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
,

(3)
where X(n) is a sparse matricization of tensor X by mode-
n, and MA

(n) ∈ RIn×R,A(i) ∈ RIi×R are matrices. For
efficiency, we generally perform the MTTKRP operation by
operating directly on the nonzeros of sparse tensor X without
explicitly matricizing and inherently multiply the matrices,
avoiding explicit Khatri-Rao products (details in § IV).
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B. CNN

CNN is a class of networks that finds non-linear models of
patterns in inputs and makes data classications. The most pop-
ular type of CNNs used in image recognition are convolutional
neural networks (CNNs) [15, 18]. A CNN usually consists of
a stack of layers of nodes. In Figure 2 (a), the leftmost layer
is the input level, with each node representing one element
in the input vector (e.g., the gray value of a pixel in an
input image), the rightmost is the output level, with each node
representing the predicted probability for the input to belong
to one of two classes. The output layer of a CNN gives the
final prediction, while the other layers gradually extract out the
critical features from the input. A CNN may consist of mixed
types of layers, some for subsampling results (pooling layers),
some for non-linear transformations. Convolution layers are
of the most importance, in which, convolution shifts a small
window (called a filter) across the input, and at each position,
it computes the dot product between the filter and the input
elements covered by the filter, as Figure 2 (b) shows in a
2-D case. In Figure 2 (a), the weights of every three edges
connecting three input nodes with one layer-2 node form the
filter ¡ w1, w2, w3 ¿ at that level. The result of a convolution
layer is called an activation map. Multiple filters can be used
in one convolution layer, which will then produce multiple
activation maps. The last layer (i.e., the output layer) usually
has a full connection with the previous layer.

Part of the CNN training process is to determine the proper
values of the parameters in the filters (i.e., weights on the
edges of the networks). In training, all the parameters in the
network are initialized with some random values, which are re
ned iteratively by learning from training inputs. Each training
input has a label (e.g., the ground truth of its class). The
forward propagation on an input through the network gives
a prediction; its difference from its label gives the prediction
error. The training process (via back propagation) revises the
network parameters iteratively to minimize the overall error on
the training inputs. In using CNN, only for- ward propagation
is needed to get the prediction. Note that the size of the inputs
to a CNN is typically fixed, equaling to the number of nodes
in its input layer. If the raw inputs are of different sizes, they
have to be normalized to the unified size.

III. TCNN

For the first layer, the input is irregular data set, different
from general regular data stored in matrix form, the attributes
in these irregular data set has relationship from each other. For
our example, it is the network traffic data set. And the data
record is a 3D topology attributes as (SourceIP, DestinationIP,
Port); The output of tensor decomposition is a core tensor and
three matrixes, which record the relationship value between
SourceIP and DestinationIP, between SourceIP and Port and
between DestinationIP and Port.

In the convolutional layer, CP decomposes a tensor as a
linear combination of rank one tensors. In general, convolution
layers in CNNs map a 3-way input tensor X of size S×W×H
into a 3-way output tensor Y of size S×W ′×H ′ using a 4-way
kernel tensor K of size T×S×D×D with T corresponding to

different output channels, S corresponding to different input
channels, and the last two dimensions corresponding to the
spatial dimension (for simplicity, we assume square shaped
kernels and odd D)

Yt,w′,h′ =

S∑

s=1

D∑

d′=1

D∑

d=1

Kt,s,d′,dXs,wd′ ,hd
(4)

wj = (w′ − 1)∆ + d′ − p and hi = (h′ − 1)∆ + d− p, where
∆ is stride and p is zero-padding size.

CP decomposition: Now the problem is to approximate the
kernel tensor K with rank-R CP-decomposition. This can be
represented as in (3). Spatial dimensions are not decomposed
as they are relatively small (e.g., 3× 3 or 5× 5).

Kt,s,d′,d =

R∑

r=1

U(1)
r,sU (2)

r,d′,dU
(3)
t,r (5)

where U
(1)
r,s ,U (2)

r,d′,d,U
(3)
t,r are the three components of sizes

R× S, R×D ×D, and T ×R, respectively.
Substituting (5) into (4) and performing simple manipula-

tions gives (6) for the approximate evaluation of the convolu-
tion (4) from the input tensor X into the output tensor Y .

Yt,w′,h′ =

R∑

r=1

U
(3)
t,r (

D∑

d′=1

D∑

d=1

U (2)
r,d′,d(

S∑

s=1

U(1)
r,sXs,wd′ ,hd

)) (6)

Equation (6) tells us that the output tensor Y is computed
by a sequence of three separate convolution operations from
the input tensor X with smaller kernels:

Zr,w,h =

S∑

s=1

U(1)
r,sXs,w,h (7)

Z ′r,w′,h′ =

D∑

j=1

D∑

i=1

U(2)
r,sZt,wj ,hi

(8)

Yt,w′,h′ =

R∑

r=1

U
(3)
t,rZ ′t,w′,h′ (9)

where Zr,w,h and Z ′r,w′,h′ are intermediate tensors of sizes
R×W ×H and R×W ′ ×H ′, respectively.

IV. CP DECOMPOSITION AND ITS BOTTLENECK

We introduce a CP decomposition algorithm with Alternat-
ing Least Squares method (CP-ALS) and identify its bottle-
neck (MTTKRP operation) in this section. Our motivation is
through optimizing MTTKRP operation to improve the overall
CP-ALS’s performance.

The CANDECOMP/PARAFAC Decomposition (CPD) [10]
decomposes a tensor as a sum of component rank-one tensors.
For example, a third-order CPD of X ∈ RI×J×K (Figure 4),
is approximated as

X ≈ Jλ;A,B,CK ≡
R∑

r=1

λrar ◦ br ◦ cr, (10)
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where R is the approximate rank of tensor X , which is usually
set to a small number (e.g. 10) for the purpose of low-rank
approximation. ar,br, cr are vectors which combine to dense
matrices A ∈ RI×R,B ∈ RJ×R, and C ∈ RK×R [10], and λ
contains the weights when normalizing each vector to length
one.

While tensor decompositions are ideal for analyzing multi-
modal relationships in high-order data, this comes with the
challenge of facing the ‘curse of dimensionality’, the expo-
nential increase in time and storage as dimension increases.
Compared to other tensor decompositions such as Tucker,
CPD is more scalable as order increases for both time and
storage complexity [5].

In a typical data analysis application we are interested in un-
covering latent structures through a low-rank decomposition.
This means fixing a rank R and computing the approximation
Jλ;A,B,CK. One of the most popular algorithm is CP-
ALS [10], which fixes all factor matrices except one to update
that factor matrix, iterating until some convergence criterion
is satisfied. This process for a N th-order tensor is shown in
Algorithm 1 and depicted in Figure 4

Algorithm 1 CP-ALS algorithm for an N th-order sparse
tensor.
Input: An N th-order sparse tensor X ∈ RI1×I2×···×IN and an integer

rank R;
Output: A sequence of dense factor matrices A(1),A(2), . . . ,A(N),

A(i) ∈ RIi×R;
1: Initialize A(1),A(2), . . . ,A(N);
2: do
3: for n = 1, 2, . . . , N do
4: V← A(1)†A(1) ∗ · · ·A(n−1)†A(n−1)∗

A(n+1)†A(n+1) ∗ · · · ∗A(N)†A(N)

5: A(n) ← X(n)(A
(N) � · · · �A(n+1)�

A(n−1) � · · · �A(1))V†

6: Normalize columns of A(n) and store the norms as λ
7: end for
8: while Fit ceases to improve or maximum iterations exhausted.
9: Return: Jλ,A(1),A(2), . . . ,A(N)K;

TENSOR DECOMPOSITIONS AND APPLICATIONS 463

Table 3.1 Some of the many names for the CP decomposition.

Name Proposed by
Polyadic form of a tensor Hitchcock, 1927 [105]
PARAFAC (parallel factors) Harshman, 1970 [90]
CANDECOMP or CAND (canonical decomposition) Carroll and Chang, 1970 [38]
Topographic components model Möcks, 1988 [166]
CP (CANDECOMP/PARAFAC) Kiers, 2000 [122]

X

c1 c2

aR

b1

a1

b2

a2

bR

cR

≈ + + · · ·+

Fig. 3.1 CP decomposition of a three-way array.

The CP decomposition factorizes a tensor into a sum of component rank-one
tensors. For example, given a third-order tensor X ∈ RI×J×K , we wish to write it as

(3.1) X ≈
R∑

r=1

ar ◦ br ◦ cr,

where R is a positive integer and ar ∈ RI , br ∈ RJ , and cr ∈ RK for r = 1, . . . , R.
Elementwise, (3.1) is written as

xijk ≈
R∑

r=1

air bjr ckr for i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K.

This is illustrated in Figure 3.1.
The factor matrices refer to the combination of the vectors from the rank-one

components, i.e., A =
[
a1 a2 · · · aR

]
and likewise for B and C. Using these

definitions, (3.1) may be written in matricized form (one per mode; see section 2.4):

X(1) ≈ A(C⊙B)T,(3.2)

X(2) ≈ B(C⊙A)T,

X(3) ≈ C(B⊙A)T.

Recall that ⊙ denotes the Khatri–Rao product from section 2.6. The three-way model
is sometimes written in terms of the frontal slices of X (see Figure 2.2):

Xk ≈ AD(k)BT, where D(k) ≡ diag(ck:) for k = 1, . . . , K.

Analogous equations can be written for the horizontal and lateral slices. In general,
though, slicewise expressions do not easily extend beyond three dimensions. Following
Kolda [134] (see also Kruskal [141]), the CP model can be concisely expressed as

X ≈ !A,B,C" ≡
R∑

r=1

ar ◦ br ◦ cr.
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(a) Graphical representation of tensor and matrix format
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(b) Tensor network diagram representation

Fig. 4. CP decomposition on a third-order tensor.

Based on our analysis below and experiments (not shown
here), the bottleneck of CP-ALS is the MTTKRP sequence. For
a third-order sparse tensor, MTTKRP computations make up

81% of total running time of its CPD. Assuming a N th-order
sparse cubical (equal mode size) tensor X ∈ RI×I×···×I , with
m nonzeroes, the time complexity of each iteration of CP-ALS
is:

TCP ≈ N(TM +NIR2), (11)

where TM is the time complexity of MTTKRP, equal to
O(mR) [2, 3, 9, 15]. Generally, R,N < 100, I << m for
high-order tensors, thus NIR2 << TM . The runtime of CP-
ALS is dominated by MTTKRP sequence,

TCP = O(NTM ) = O(NmR). (12)

This work focuses on parallelizing MTTKRP operation to
speedup CP-ALS algorithm.

V. SEQUENTIAL MTTKRP

MTTKRP operation of a third-order sparse tensor on the first
mode is:

MA = X(1)(C�B), (13)

the scalar formulation of which is:

MA(i, r) =

J∑

j=1

K∑

k=1

X (i, j, k)C(k, r)B(j, r)). (14)

The straight-forward algorithm is first computing the Khatri-
Rao product of two dense matrices C and B, then doing a
sparse matrix-dense matrix multiplication with the matricized
sparse matrix X(1). The output is stored as a dense matrix.
This algorithm has memory explosion problem, since the result
dense matrix from Khatri-Rao product is large even similar
storage size with sparse tensor X .

S. Smith et.al. proposed an optimized MTTKRP algorithm
in SPLATT library, which only operates on nonzero entries
and factors out the inner multiplication with B to reduce
the number of Floating-Point Operations (FLOPs) [15]. Its
optimized MTTKRP operation is

M(i, r) =

J∑

j=1

B(j, r) ∗
K∑

k=1

X (i, j, k)C(k, r). (15)

However, SPLATT’s MTTKRP algorithm is based on a partic-
ular sparse tensor format, which is hard to distribute on Spark
platform.

We modified SPLATT’s MTTKRP algorithm by using TTM
operation and saving the intermediate data. Algorithm 2 shows
our MTTKRP algorithm for a third-order sparse tensor X
on mode-I . First, sparse tensor X times a dense matrix
C, generating a new sparse tensor Y . Then Tensor-Matrix
Hadamard Reduction product (TMHR) (mentioned in § II) is
used to compute a dense matrix MA by contracting on mode-
J .

Algorithm 2 is taken as our baseline to optimize MTTKRP.

VI. PARALLEL CP DECOMPOSITION

To introduce parallel CPD, we first introduce data structure
of local and distributed sparse tensors. Based on the data
structure, we designed parallel MTTKRP and CPD algorithms.
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Algorithm 2 Sequential MTTKRP algorithm MA ← X(1)(C�
B).
Input: A third-order sparse tensor X ∈ RI×J×K , dense factor matrices

B ∈ RJ×R,C ∈ RK×R;
Output: Updated dense factor matrix MA ∈ RI×R;
1: Generate Y: Y ← X ×3 C
2: MA = TMHR (Y,B)
3: return MA;

A. Data Structure
To implement parallel CPD algorithm, an efficient data

structure is indispensable to represent sparse tensors locally
and distributedly. In this section, we introduce our methods to
build distributed sparse tensors.

We create a class to represent a sparse tensor, named
spTen, which has four members: the number of dimensions
(ndims), the number of nonzeros (nnz), and the size of each
mode (dims) to describe a sparse tensor and tuples storing all
nonzero entries. Coordinate format (COO) is used to store the
nonzero entries, Figure 5 shows a third-order sparse tensor
represented by it. Each row in Figure 5 stands for a nonzero
value with its three indices. We use ‘Array[Int]’ for indices,
to better represent tensors in different orders (dimensions).
tuples is an array of such tuples, ‘Array[(Array[Int],Double)]’.
For a distributed sparse tensor, SpTenDist class is designed to
distribute all nonzero entries.

1 1 1 1.0

1 2 1 2.0

1 2 2 3.0

2 2 1 4.0

2 2 1 5.0

2 2 2 6.0

i j k val[ ]

Fig. 5. Coordinate format of a third-order sparse tensor.

We also design other data structures for the intermediate
‘semi-sparse’ tensor Y in Algorithm 3. A ‘semi-sparse’ tensor
is a sparse tensor with one mode extremely dense (detail is
below).

B. Parallel MTTKRP

The distributed sparse tensor in format spTenDist, each
nonzero entry is distributed and computed separately. Par-
allel MTTKRP algorithm is illustrated in Algorith 3. First,
each nonzero entry X (i, j, k) is multiplied with a vector
MC(k, :) to compute TTM operation Y ← X ×3 C, outputs
Y ∈ RI×J×R. For each dense vector Y(i, j, :), a Hadamard
product is computed with B(j, :), to generate MA. We use
‘reduceByKey’ and ‘map’ RDD transformations in Spark to
parallelize Algorithm 3. Finally, MA is collected to local
machine. Note that, Algorithm 3 computes each nonzero with
a vector instead of a single element locally. This vectoriza-
tion greatly improves MTTKRP performance by better spatial
locality, which avoids R times memory accesses.

Algorithm 3 Parallel MTTKRP algorithm MA ← X(1)(C �
B).
Input: A third-order sparse tensor X ∈ RI×J×K , dense factor matrices

B ∈ RJ×R,C ∈ RK×R;
Output: Updated dense factor matrix MA ∈ RI×R;

. Y ← X ×3 C
1: parfor x = 1, 2, . . . ,m do
2: i = X .tuples(x).inds(0)
3: j = X .tuples(x).inds(1)
4: k = X .tuples(x).inds(2)
5: Y(i, j, :)+ =

∑K
k=1 X (i, j, k)C(k, :)

6: end parfor
. Loop all P nonzero fibers Y(i, j, :). MA = TMHR (Y,B).

7: parfor y = 1, 2, . . . , P do
8: i = Y.tuples(y).inds(0)
9: j = Y.tuples(y).inds(1)

10: MA(i, :)+ =
∑J

j=1 Y(i, j, :) ∗B(j, :)
11: end parfor
12: return MA;

C. Parallel CP-ALS

By far, we optimized MTTKRP, the critical operation of
CP-ALS. Our parallel CP-ALS algorithm is proposed in
Algorithm 4. Compared to Algorithm 1, other than parallel
MTTKRP, we also optimize the Hadamard product sequence
to compute V. Instead of every iteration computes all V(i)s,
we only compute V(n) with updated matrix A(n) then do
Hadamard products.

Algorithm 4 CP-ALS algorithm for an N th-order sparse
tensor.
Input: An N th-order sparse tensor X ∈ RI1×I2×···×IN and an integer

rank R;
Output: A sequence of dense factor matrices A(1),A(2), . . . ,A(N),

A(i) ∈ RIi×R;
1: Initialize A(1),A(2), . . . ,A(N);
2: do
3: for i = 1, . . . , n− 1, n+ 1, . . . , N − 1 do
4: V (i) ← A(i)†A(i)

5: end for
6: for n = 1, 2, . . . , N do
7: V (n) ← A(n)†A(n)

8: V ← Hada-reduce (V(1), . . . ,V(n−1),V(n+1), . . . ,VN )
9: A(n) ← Para-MTTKRP(
X ,A(1), . . . ,A(n−1),A(n+1), . . . ,AN

)
10: Normalize columns of A(n) and store the norms as λ
11: end for
12: while Fit ceases to improve or maximum iterations exhausted.
13: Return: Jλ,A(1),A(2), . . . ,A(N)K;

VII. EXPERIMENTS AND ANALYSIS

A. Data Sets and Platform

In order to evaluate efficiency of our proposed method, we
use the IP3D dataset [16], which is a 3D network data with
dimension 500-by-500-by-100. The traffic trace consists of
TCP flow records collected at the backbone router of a class-B
university network. Each record in the trace corresponds to a
directional TCP flow between two hosts through a server port.
Here we use the model described in section 3 to detect the
following three types of anomalies:

Remote to local (R2L) Attacks: For example, R2L attack
occurs when an intruder who send packets to a large number
of different hosts in the system.
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Denial of Service (DOS) Attacks: For example, the victim of
a distributed denial of service attack (DDoS), which receives
high volume of traffic from a large number of source hosts.
Port-scan attacks: Ports that receive abnormal volume of
traffic, and/or traffic from too many hosts.

Platform We use Intel Core i7-4770K platform with
3.5GHz frequency, four cores supporting up to 8 hardware
threads.

Measurement Runtime is used to measure our parallel
algorithm.

B. Performance

We implemented four algorithms: CPD-sInit, CPD-sVec,
CPD-pInit, and CPD-pVec.
• CPD-sInit: Algorithm 1 with the most straightforward

MTTKRP algorithm, matricized sparse tensor timing the
result of Khatri-Rao product, on a single machine. This
algorithm is the most space-consuming.

• CPD-sVec: Algorithm 1 with MTTKRP implemented by
Algorithm 2.

• CPD-pInit: Algorithm 1 with the most straightforward
parallel MTTKRP algorithm. This implementation is also
space-consuming.

• CPD-pVec: Parallel algorithm 4 with MTTKRP imple-
mented by Algorithm 3.

Theoretically, CPD-pVec should get the highest perfor-
mance and also space-efficient. Since CPD-sInit and CPD-
pInit cannot run on large tensors, we test on both large
and small tensors for better comparison. The small synthetic
tensors are generated using Tensor Toolbox [2]. Figure 6 shows
the comparison among the four implementations on two sparse
tensors. ‘Syn-500’ is a third-order synthetic sparse tensor,
and ‘IP3D’ is the sparse tensor dataset. Comparing the four
implementations on ‘Syn-500’, our CPD-sVec and CPD-pVec
are faster than CPD-sInit and CPD-pInit respectively, showing
the benefit of our algorithm. While on IP3D sparse tensor,
CPD-sInit and CPD-pInit cannot run because of not enough
space. Comparing our two implementations CPD-sVec is faster
than CPD-pVec. This is opposite from theoretical analysis,
after optimizing on Spark, our CPD does not improve its
performance. We profile our code and find two reasons: First,
our IP3D dataset is still small, which easily fits in memory.
The parallelism benefit doesn’t show up from this dataset. We
plan to test much larger dataset to prove this. Second, because
Breeze is column-majored our implementation requires some
matrix transpose, which is relatively expensive especially
for low-order tensors. We plan to optimize it by changing
the algorithm framework, decreasing matrix transpose from
algorithm level.

Figure 7 shows our CP-ALS running time is relatively
steady under variant rank values. This makes it possible to
discover more phenotypes through one time execution of CPD.

Figure 8 shows the comparison of the outcome of this
study with the original CNN methods. The accuracy is tested
according the classification rate, which is different with the
change of number of hidden layer of convolutional neuro
network. But, in the end it will reach a stable value when
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Fig. 6. CP-ALS running time on MIMIC-III and a small synthetic sparse
tensor.
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Fig. 7. CP-ALS running time under variant rank values.

choosing a fixed layer number.From this result, we can see that
the accuracy of TCNN is comparable with original method.

Fig. 8. Accuracy.

VIII. RELATED WORK

Recently, tensor methods have been used in the optimization
of deep neural networks [6]. One class of broadly useful
techniques within tensor methods are tensor decompositions.
The properties of tensors have long been studied, recently
lots of work in machine learning use tensor such as learning
latent variable models [1], and developing recommender
systems [8]. Several recent papers apply tensor learning and
tensor decomposition to deep neural networks for the purpose
of devising neural network learning algorithms with theoretical
guarantees of convergence [14]. Other lines of research have
investigated practical applications of tensor decomposition to
deep neural networks with aims including multi-task learn-
ing [17], and speeding up convolutional neural networks
[12]. Several recent papers apply decompositions for either
initialization [17] or post-training [13]. Different with these
work, our work decompose the convolution layer, what’s more,
our method improve the performance of CP decomposition
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by proposing a new optimized algorithm and parallel the
algorithm

IX. CONCLUSION AND FUTURE WORK

Big Data consists of multidimensional, multi-modal datasets
that are so huge and complex that require new methods to
process and these data. Traditional method can not match the
requirement of big network traffic data anomaly detection. we
proposes a new method named Tensor Convolutional Neuro-
Network (TCNN) to resolve network traffic anomaly detection
problem which utilize the tensor decomposition technology
to decompose the convolution layer and reduce the memory
cost. What’s more, consider the performance requirement of
big data process, we improve the CP decomposition algorithm.
The experiment results show our improvement achieve better
performance as well as comparable accuracy.

We intend to combine federated learning with our work to
implement a distributed parallel convolutional neuro-network
on amount of smart device by updating the local gradient
descent to the sever.
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