
Learning with Degree-Based Subgraph Estimation

Bert Huang

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2011

c©2011

Bert Huang

All Rights Reserved

ABSTRACT

Learning with Degree-Based Subgraph Estimation

Bert Huang

Networks and their topologies are critical to nearly every aspect of modern life, with social networks

governing human interactions and computer networks governing global information-flow. Network

behavior is inherently structural, and thus modeling data from networks benefits from explicitly

modeling structure. This thesis covers methods for and analysis of machine learning from network

data while explicitly modeling one important measure of structure: degree.

Central to this work is a procedure for exact maximum likelihood estimation of a distribution

over graph structure, where the distribution factorizes into edge-likelihoods for each pair of nodes

and degree-likelihoods for each node. This thesis provides a novel method for exact estimation of

the maximum likelihood edge structure under the distribution. The algorithm solves the optimization

by constructing an augmented graph containing, in addition to the original nodes, auxiliary nodes

whose edges encode the degree potentials. The exact solution is then recoverable by finding the

maximum weight b-matching on the augmented graph, a well-studied combinatorial optimization.

To solve the combinatorial optimization, this thesis focuses in particular on a belief propagation-

based approach to finding the optimal b-matching and provides a novel proof of convergence for be-

lief propagation on the loopy graphical model representing the b-matching objective. Additionally,

this thesis describes new algorithmic techniques to improve the scalability of the b-matching solver.

In addition to various applications of node degree in machine learning, including classification

and collaborative filtering, this thesis proposes a learning algorithm for learning the parameters of

the distribution from network data consisting of node attributes and network connectivity, using

strategies similar to maximum-margin structured prediction.

The main methods and results in this thesis represent a deep exploration of exact degree-based

estimation for machine learning from network data, and furthermore lead to various extensions and

applications of the main idea described within.

Table of Contents

1 Introduction 1

1.1 Thesis contributions . 2

1.2 Organization . 3

I Degree-Based Subgraph Estimation 6

2 Link Prediction 7

2.1 Problem formulations for link prediction . 7

2.2 Prediction methods . 9

2.2.1 Graph distance methods . 9

2.2.2 Structured prediction approaches . 10

2.2.3 Latent space models . 10

2.2.4 Exponential random graph models . 11

2.2.5 Other methods . 12

2.3 Link prediction summary . 12

3 Degree-Based Subgraph Estimation 13

3.1 Maximum weight matching and its generalizations 14

3.1.1 Degree-based matching . 15

3.1.2 Representing subgraph optimizations with concave degree preferences . . . 20

3.1.3 Degree-based matching as maximum likelihood estimation 22

3.2 Summary of degree-based subgraph estimation 25

i

4 Belief Propagation for b-Matching 26

4.1 Belief propagation . 26

4.1.1 Related work . 27

4.1.2 Maximum weight matching solvers . 28

4.1.3 The max-product algorithm . 29

4.2 Fast belief propagation for maximum weight b-matching 30

4.2.1 Convergence analysis . 31

4.2.2 Message simplification . 34

4.2.3 Fast message updates via sufficient selection 37

4.2.4 Parallel computation . 44

4.2.5 Empirical evaluation of sufficient-selection belief propagation for b-matching 45

4.3 Summary of fast belief propagation for maximum weight b-matching 49

II Applications 50

5 Graph-Based Machine Learning 51

5.1 Robustness of k-nearest neighbors vs. b-matching in high dimensional data 52

5.2 Robustness of b-matching against concept drift via translation 54

5.3 Graph construction for semi-supervised learning 57

5.4 Summary of graph-based classification . 58

6 Collaborative Filtering 60

6.1 Prior approaches for collaborative filtering . 61

6.2 Collaborative filtering as graph estimation . 61

6.2.1 Concentration bound . 62

6.2.2 Edge weights . 63

6.2.3 Results . 64

6.3 Collaborative filtering via rating concentration . 68

6.3.1 Algorithm description . 70

6.3.2 Experimental evaluation of collaborative filtering via rating concentration . 76

6.3.3 Discussion . 79

ii

6.4 Summary of degree-based approaches to collaborative filtering 80

7 Learning from and Predicting Networks 82

7.1 Exact degree priors in synthetic scale-free networks 83

7.2 Structured metric learning approaches for graph prediction 84

7.3 Degree distributional metric learning . 87

7.3.1 Structured prediction learning . 89

7.3.2 Stochastic large-scale learning . 91

7.4 Structure preserving metric learning . 95

7.4.1 Stochastic SPML with k-nearest neighbor 95

7.5 Experiments with DDML and SPML . 96

7.6 Discussion of learning from and predicting networks 102

8 Conclusions and Discussion 103

8.1 Contributions . 103

8.2 Open questions and future work . 104

8.3 Discussion . 105

III Appendices 106

A Miscellaneous Extensions 107

A.1 Approximating the matrix permanent with matching belief propagation 107

A.1.1 The permanent as a partition function . 108

A.1.2 Empirical evaluation of Bethe permanent approximation 113

A.1.3 Discussion and future directions . 118

A.2 Heuristic extensions for b-matching belief propagation 119

A.2.1 Oscillation detection . 119

A.2.2 Heuristic to find feasible b-matching without convergence 121

B Additional Proofs 123

B.1 Proof of convergence for bipartite b-matching with belief propagation 123

B.2 Proof of convergence for b-matching when the linear programming relaxation is tight 126

iii

B.3 Proof of collaborative filtering data concentration and corollaries 128

B.4 Concentration proof for rating features . 131

C Additional Algorithm Derivations 134

C.1 Maximum entropy dual for collaborative filtering model 134

Bibliography 136

iv

List of Figures

3.1 Example bipartite b-matching. 15

3.2 Example of constructing the augmented graph using auxiliary nodes to encode de-

gree preferences. 16

3.3 Example of mapping a degree dependent problem to a hard-constrained b-matching. 21

3.4 Dependency graph between edge variables in a four-node graph and example degree

preference functions. 24

4.1 Example of an unwrapped graph at three iterations. 32

4.2 Visualization of the sufficient selection process. 41

4.3 Timing results of fast belief propagation on various input formats. 46

5.1 Illustration of greedy k-nearest neighbors against b-matching. 53

5.2 Results comparing k-nearest neighbors to b-matching for classification on the

DOROTHEA data set. 55

5.3 Comparison of k-nearest neighbors to b-matching on translated synthetic data. . . . 56

5.4 Results comparing k-nearest neighbors to b-matching on digits with different back-

grounds. 57

6.1 Collaborative filtering testing errors of MAP solution across different data sets and

random splits. 67

6.2 Graphical model of collaborative filtering sampling assumptions. 70

6.3 Average log likelihoods for each algorithm on Movielens data. 77

7.1 Error and accuracy measures of synthetic graph reconstruction. 85

v

7.2 Example of non-stationary degree preference functions. 88

7.3 ROC curve for various algorithms on the “philosophy concepts” category. 99

7.4 Feature importance of learned Facebook model. 101

A.1 Empirical running time of sum-product belief propagation for matching. 113

A.2 Plots of the approximated permanent versus true permanent. 115

vi

List of Tables

3.1 Constraints for maximum-weight generalized matching problems. 15

4.1 Running time statistics on the full MNIST data set. 48

5.1 Error rates of USPS semi-supervised classification. 58

6.1 Average zero-one error rates and standard deviations of best MAP with degree priors

and fMMMF chosen via cross-validation (collaborative filtering data sets). 66

6.2 Average likelihood and divergence results for synthetic data. 77

6.3 Query rating log-likelihoods on Movielens data. 79

6.4 Root mean square or `2 performance of various algorithms. 80

7.1 Graph prediction data set information and prediction performance. 100

A.1 Permanent approximation ranking of synthetic matrices. 114

A.2 Error rates of SVM using permenant approximation kernel. 117

vii

List of Algorithms

1 Optimization procedure for degree-based matching. 17

2 Belief propagation for b-matching. 38

3 Sufficient selection for belief propagation b-matching 40

4 Post-processing procedure for collaborative filtering using degree concentration. . . 66

5 Degree distributional metric learning with cutting-plane optimization. 90

6 Stochastic degree distributional metric learning using subgradient descent 94

7 Structure preserving metric learning with nearest neighbor constraints and optimiza-

tion with projected stochastic subgradient descent 97

8 Oscillation detector for belief propagation. 120

viii

Acknowledgments

I owe my deepest gratitude to various people who made this thesis possible. Because of their

direct influence on my research, I am grateful to my advisors, Tony Jebara, who advised me on

all of the work in this thesis, and Ansaf Salleb-Aouissi, who advised me on a significant amount

of research that does not fit in the compact topic area covered in this thesis. I am proud to now

be part of each of their academic lineages. I am also grateful to David Waltz and the Center for

Computational Learning Systems for providing me with the opportunity to enter the Ph.D. program

by hiring me as a graduate research assistant my first few years in the program. Other people who

deserve thanks include the members of the Machine Learning Laboratory, which over the years that

I was a member included Stuart Andrews, Delbert Dueck, Andrew Howard, Risi Kondor, Darrin

Lewis, Raphael Pelossof, Blake Shaw, Pannaga Shivaswamy, Yingbo Song, Kapil Thanadi, and

Adrian Weller.

Before my time as a Ph.D. student, I was fortunate to have brilliant, enthusiastic teachers at

all levels of my education. At Brandeis University, as an undergraduate, my love for artificial

intelligence and machine learning was especially nurtured by Jordan Pollack, Edwin de Jong, and

Jerry Samet. As a graduate student at Columbia, my passion for my research area was further honed

by Rocco Servedio, John Kender and, of course, Tony. The work these professors did has had a

profound impact on the way I think, and they deserve sincere thanks for that effort.

I additionally thank Augustin Chaintreau, Devavrat Shah, and Cliff Stein for serving on my

thesis committee, Lexing Xie for mentoring me during my internship at IBM Research, and Michele

Merler, who shares an office with me and Blake Shaw and therefore had to put up with all our hijinks.

As a result of the work in this thesis, I owe a tremendous debt of friendship to all of my friends

who are not named “Bert’s Thesis”, which, in fact, is all of them. You have not received the attention

from me that you deserve, and yet I continually feel your support.

Most importantly, my family, to whom this thesis is dedicated, deserves the most thanks. Dur-

ix

ing the final few months of my Ph.D. program, my grandmother, Chen Chang, passed away after

years of suffering from dementia. Since she lived with my family and played a significant role in

raising me, she was profoundly influential on me as a person, and her neurological illness which

manifested when I was becoming an adult was influential in my choosing to study the science of

information. My parents, Dr. Shaw Huang1 and Phoebe Phong Chang, provided me with the values

that guided me toward science, writing, and hard work. My sister and my brother-in-law, Angela

and Al Ming, were among other things extremely influential in my studying computer science. My

brother, Christopher Huang, has vision, artistry, and skills as a photographer2 that inspire me every

day to seek the beauty in my own work. My future family-in-law, Michael, Roberta, and Danielle

Smith, took me in as a member of their family even though I (a) took forever to propose, and (b)

have undying love for the Red Sox. And, finally, immeasurable gratitude goes to the woman with

whom I share everything except for whatever-the-heck-all-the-math-in-this-thesis-means, who is

the completion of the strange loop that is my identity, my fiancée Emily Smith.

Bert Huang, July 2011

1While many other people I thank here have doctorates, I list my father as “Dr. Huang” because upon publication of

this thesis by Columbia University, I will ask people to “please call me Bert; Dr. Huang is my dad.”

2http://www.christopherhuang.com

x

http://www.christopherhuang.com

For my family

xi

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Networks are collections of objects, or nodes, that interact with each other. Networks govern nearly

every aspect of the modern world. Computer networks form the backbone of civilization, controlling

the flow of information. With the advent of Internet-based social networking services in the early

21st century, the commercial and industrial interest in analysis of social networks has burgeoned

[Boyd and Ellison, 2007]. The most critical feature of any network is its structure or topology,

which, while can be described as a list of connections between nodes, cannot be fully characterized

without considering many, if not all, connections at once. For this reason, efficient computational

models that incorporate structure are uncommon. Many notions of structure are too complex to

handle efficiently and exactly. One relatively simple measure of structure is the local degree of

each node: the number of connections or interactions of each node. This thesis is an exploration of

methods exploiting the node-degree aspect of structure for machine learning in network settings.

Machine learning is the task of extracting information from raw data. The extracted information

often consists of a model from which predictions or decisions can be made. Combining ideas

from the fields of statistics and artificial intelligence, machine learning techniques often rely on

known independence between parts of data. For example, in the traditional setting of supervised

learning, data points are often assumed to be independent. When data comes from real networks,

the structural nature of networks makes entity independence unlikely, and the assumption of too

much independence in a mathematical model often leads to severe deficiencies. In contrast, the

assumption of too little independence results in overly complex models for which computational

learning is either expensive or intractable. It is thus important to identify models of structure that

CHAPTER 1. INTRODUCTION 2

are both efficiently learnable and yet structural enough to capture the behavior of real networks.

Since machine learning techniques use statistical intuitions and mathematical measures of un-

certainty, they often have associated probabilistic models (either explicitly or implicitly). Prob-

abilistic models are powerful formalisms for data analysis in part because they make modeling

assumptions explicit. This thesis revolves around a probabilistic model for networks that explicitly

depends on the degrees of nodes.

The degree of a node in a network is a local measure of structure, in the sense that each node

“knows” its own degree just by knowing its neighbors. Other measures of structure, such as trian-

gles, path lengths, or cliques require exploration beyond local information to compute. Despite the

local measure of degree, the value of the degree depends on aggregating information about all the

interactions and non-interactions between nodes. Furthermore, the degree distribution of a graph is

a well-studied global measure of structure that has played a central role in previously established

work in network analysis [Barabási, 2003].

1.1 Thesis contributions

The contributions in this thesis include a novel technique for predicting the most likely network

structure given a probabilistic model factorized into edge likelihoods and degree likelihoods. This

estimation technique, viewed outside the probabilistic interpretation, is a generalization of maximum

weight b-matching, which is an efficiently solvable combinatorial problem, itself a generalization of

the more commonly studied maximum weight matching.

The optimization procedure for the graph structure estimation above is driven by reduction to a

maximum weight b-matching problem, for which this thesis provides a new solver based on loopy

belief propagation. Loopy belief propagation is a heuristic approximation algorithm for proba-

bilistic inference, which is not guaranteed to find a true optimum or even converge on arbitrary

problems. However, this thesis provides a proof of efficient convergence to the optimum of the

maximum weight b-matching problem, which defines one of few known classes of problems on

which loopy belief propagation is guaranteed to converge to the true solution. This thesis also pro-

vides scalability improvements for belief propagation that make it a competitively fast solver for

certain b-matching problems.

CHAPTER 1. INTRODUCTION 3

This thesis contains explorations of application areas using the procedure above and its exten-

sions. Among these applications is the task of collaborative filtering, for which two new approaches

are derived and tested. In collaborative filtering, the goal is to predict user preferences for items from

past data. Each of these methods performs the prediction task by leveraging a notion of degree,

counting the types of recommendations given by users and received by items.

Parameterizing the components of the edge-degree probabilistic model, this thesis also provides

a general learning algorithm that learns parameters from data, allowing prediction of graph structure

for new node data when edge and degree likelihoods are not given a priori. The learning algorithm

is a new instance of structured prediction, and a stochastic variant is provided for learning from

large-scale data sets.

Example experiments, discussion and analysis of the techniques and models are provided

throughout the text.

1.2 Organization

Terminology and notation This thesis uses the term network to describe a real set of interacting

objects, and the term graph to describe the mathematical formalism often used to model networks.

Often the distinction is unnecessary, in which case the terms are used interchangeably. Unless

explicitly stated, all uses of the verb “learn” and its conjugations refer to machine or algorithmic

learning, in the sense of a computational technique for extracting information from data.

Each chapter of this thesis is meant to be as self-contained as possible, with reintroduction of

mathematical notation when appropriate. Symbol names are somewhat consistent, though conven-

tions such as using the symbol x in various typefaces as observed data, n and m for the cardinalities

of sets, U and V as matrix factors, the symbols G, V , U , and E for describing graphs in set nota-

tion, and index symbols mostly take precedence over consistency across chapters, especially when

chapters address different problem settings. Notation within each chapter, however, is always con-

sistent. Bold uppercase symbols such as X denote matrices, and bold lowercase symbols such as x

denote vectors. The indexed lowercase xi is used to denote the i’th row (or column) of matrix X,

in uppercase. Ranges for index terms (usually i, j, or k) are often omitted for cleanliness when the

range is obvious (1 to n is a good guess).

CHAPTER 1. INTRODUCTION 4

The graph formalism A graph is a mathematical formalism which naturally represents a network.

A graph consists of a set of nodes and a set of edges, or connections, between nodes. Graphs are

commonly notated using either set notation, where a graph is represented by a pair G = {V,E}
composed of node-set V and edge-setE, or alternatively matrix notation, in which a graph topology

is represented by a binary adjacency matrix A whose entries Aij are 1 if the edge between the i’th

and the j’th nodes is present and zero if no edge is present.

Set notation is preferred when the unordered nature of the nodes is emphasized, and furthermore

set notation emphasizes the sparse nature of graphs. In the set notation, the quantity of named

information is determined by the number of nodes and edges in the graph, whereas the matrix

notation represents the presence or absence of an edge for each pair of nodes. Regardless of the

notational choice, conversion between representations is relatively straightforward in theory and

practice3, and this thesis uses both notational forms in its different chapters.

Outline The remainder of the thesis is segmented into two parts. Part I describes the main degree-

based probabilistic model and the estimation procedure for the model, and Part II describes ap-

plications of the model to different machine learning problems. In Part I, Chapter 2 summarizes

the current state of knowledge on the problem of link prediction, which is the primary problem

the methods in this thesis address. Chapter 3 introduces the degree-based probabilistic model and

details the reduction algorithm that converts estimation of the most likely graph structure to a max-

imum weight b-matching. Chapter 4 describes a belief propagation solver for maximum weight

b-matchings, including a convergence proof and scalability improvements. In Part II, Chapter 5 de-

scribes applications of the techniques from Part I to more traditional machine learning problems of

supervised and semi-supervised classification. Chapter 6 describes the application of degree-based

learning to the problem of collaborative filtering using degree priors derived from concentration of

data statistics. Chapter 7 describes a learning algorithm to fit model parameters for the degree-based

graph distribution from training data and applies the learned model to predicting real networks. Fi-

nally, Chapter 8 concludes with a summary of the work described in the thesis and discussion of

open questions and future work.

3Conversion between representations is especially straightforward in computer implementations with the availability

of sparse matrix libraries.

CHAPTER 1. INTRODUCTION 5

The appendices include extensions, proofs, and derivations. Appendix A contains a study of a

novel approximation algorithm for the matrix permanent derived from the belief propagation solver

for matchings and some additional heuristics for efficient implementation of the belief propagation

algorithm from Chapter 4. Appendix B contains full details for the belief propagation convergence

proof as well as the deviation bound proofs for collaborative filtering degree priors. Appendix C

provides the derivation for the dual formulation of the collaborative filtering algorithm proposed in

Chapter 6.

6

Part I

Degree-Based Subgraph Estimation

CHAPTER 2. LINK PREDICTION 7

Chapter 2

Link Prediction

The class of problems known as link prediction includes tasks surrounding the estimation of network

topology when true topology is uncertain. The topology may be uncertain because it is unobserved

or because observed interactions are not trusted as ground-truth. This section describes various

definitions and techniques for link prediction and their implications with respect to the contributions

of this thesis.

2.1 Problem formulations for link prediction

The problem of link prediction has been studied in various forms, some of which are summarized

in this section. The problem formulation often determines what assumptions can be made about the

data and thus what models and learning algorithms are appropriate. In general, since connections

in networks represent relationships between node entities, machine learning from network data is

often referred to as relational learning [Getoor and Taskar, 2007]. Using relational learning, various

link prediction problem settings are described below.

Network completion In some applications, the network is partially observed, and the prediction

algorithm attempts to estimate the rest of the network, or perform network completion. For example,

link recommendation is the task of suggesting connections to users in a social network or authors

of documents in a citation network. Often the observed part of the network is a “snapshot” of a

network at a point in time, and the prediction task is to estimate the network topology in the future.

CHAPTER 2. LINK PREDICTION 8

In other applications, the prediction algorithm is tasked to predict the structure of an entire

network. In these problems, auxiliary information is typically available, such as the attributes of the

nodes involved. A variant of network prediction is a problem in which the observed connectivity in

data is not trusted, and instead considered noisy edge measurements, in which case the prediction

task is to estimate the true underlying structure.

Between these two related problems is the task of predicting a partially-observed network when

new, previously unseen nodes join the network. While the nodes in the network that already have

some partially-observed connections are mostly analogous to nodes in a pure network completion

problem, the new nodes are more analogous to the nodes in a pure network prediction problem.

Unfortunately, practical application of link prediction problems tends to fall in this hybrid setting.

In each of these problems, a useful initial step is to understand and formalize what observed

edges mean, or, more importantly, what unobserved edges mean. In practice, observed edges oc-

casionally do not correctly indicate connectivity. Often a distinction is desired between measured

interactions such as users sharing links on a social networking service and some underlying con-

nectivity such as “friendship”. More importantly, the absence of an interaction observation rarely

indicates the absence of a connection, particularly because measured data is typically measured over

a period of time, during which connected nodes simply may not interact.

Collaborative filtering and multi-relational data The problem of collaborative filtering is to

predict user preferences for items given past interaction data. Typically, the data available is a

measurement of user tastes for items, such as ratings or reviews on an online shopping service. Col-

laborative filtering techniques are commonly applied to implement recommendation engines, which

suggest items to users based on their previous history. Machine learning techniques for collabora-

tive filtering segment the problem into two settings: weak and strong generalization [Marlin, 2004].

For weak generalization, predictions are made for users and items already seen in data, whereas

strong generalization involves predictions for new users and new items from which measurements

are not yet available.

As in network prediction and completion, problem settings are further differentiated by what

type of data is available. In particular, many approaches assume only interaction data is available,

while some assume that additional data is available about the users and items.

CHAPTER 2. LINK PREDICTION 9

The collaborative filtering problem is a form of network prediction, where the bipartite network

between user and item nodes is partially observed and completed by an algorithm. The edges

between users and items can be either weighted or typed, depending on the interpretation. Thus,

collaborative filtering can be viewed as estimating the multi-relational structure between users and

items when multiple relations, e.g., rating scores or tags, are possible.

2.2 Prediction methods

Graph prediction and its variants and extensions have been studied extensively by various fields,

including computer science, statistics, sociology, biology and applied mathematics. This section

summarizes some important methods from established literature, but coverage of methods is biased

toward relationships to the methods and ideas of this thesis, and thus this section is not a compre-

hensive review of all methods.

2.2.1 Graph distance methods

Given a partially-observed graph, measures of graph distance are available as estimates of node

similarity. For example, the length of the shortest path between any two nodes is a natural measure.

While the shortest path is quite brittle in the sense that it can change drastically with small changes

in the network, measures of connected distance based on randomness are considerably more robust.

For example, the hitting time is the measure of the expected time for a random walk from one node

to another, and the commute time is the random-walk time from a node to another and back. A

random walk is usually defined as a process that maintains a pointer to a current node and advances

to the next step by randomly choosing a next node uniformly from the current node’s neighbors. The

Katz measure is a weighted sum of all paths between nodes, where paths are weighted according to

their length, valuing shorter paths exponentially more [Liben-Nowell and Kleinberg, 2007].

Relatedly, measures on the neighborhoods of nodes themselves are also natural similarity func-

tions. For example, the Jaccard coefficient, which is a normalized count of common features, can be

computed between nodes by using neighbor nodes as features [Liben-Nowell and Kleinberg, 2007].

CHAPTER 2. LINK PREDICTION 10

2.2.2 Structured prediction approaches

The general problem of graph estimation, estimating graph structure from data, is a form of struc-

tured prediction. Structured prediction problems have dependencies between output variables, in

contrast to independent labels, whether or not the input data is independent. More specific ex-

amples of such problems include matchings for image feature alignment [Belongie et al., 2002;

Caetano et al., 2009], word alignments in machine translation [Matusov et al., 2004], natural lan-

guage parsing [Koo et al., 2007] and predicting graph structure. The distinguishing challenge

presented by structured output is that the output state space has many dependencies that couple

variables together such that they cannot be considered independently. Structured outputs are be-

coming increasingly important as independence assumptions are becoming less realistic in modern

data problems. One example of an effective approach for structured prediction is the structural

support-vector machine, which solves a quadratically regularized objective subject to exponentially

many constraints defined by the structured output. Approaches for handling the exponentially many

constraints typically involve using a separation oracle, which is an efficient procedure to find the

worst-violated constraint given a current parameter estimate. The worst-violated constraint can then

be added to a working set that bounds the feasible region [Joachims et al., 2009], or may be used to

define a subgradient step in a stochastic optimization [Ratliff et al., 2007].

2.2.3 Latent space models

A large class of network-modeling approaches aims to map nodes of a network to points in latent

space. These models often use the assumption that the probability of an edge-interaction is condi-

tionally independent given the endpoint nodes, but dependencies arise because the endpoint nodes

are unknown latent variables.

Many latent space models are fully parameterized probabilistic models [Airoldi et al., 2008;

Xing et al., 2010], though non-parametric extensions have been studied [Miller et al., 2009; Ho et

al., 2011]. The mixed-membership stochastic blockmodel (MMSB) [Airoldi et al., 2008] models

each node as a multinomial distribution over clusters, and edge connectivity is determined by the

cluster membership of node pairs. Exact prediction in these models is computationally intractable,

but approximate inference is possible using sampling methods such as Gibbs and Markov chain

Monte-Carlo sampling or variational approximation such as structured and unstructured mean-field.

CHAPTER 2. LINK PREDICTION 11

The MMSB model shares many similarities with the latent Dirichlet allocation (LDA) topic-model

[Blei et al., 2003], which models text documents as distributions over latent topics. The LDA

model itself has various extensions that incorporate network structure such as the relational topic

model [Chang and Blei, 2010] and networks uncovered by Bayesian inference (NUBBI) [Chang

et al., 2009], which extend LDA by including parameterized edge-likelihood factors in the LDA

probability distribution.

Additionally, matrix factorization techniques popularly used for collaborative filtering [Bell

and Koren, 2007; Koren et al., 2009; Rennie and Srebro, 2005; Salakhutdinov and Mnih, 2008a;

Salakhutdinov and Mnih, 2008b; Srebro et al., 2004] are examples of latent space estimation. Given

a rating matrix of scores input by user rows for item columns, these techniques estimate factors for

the rating matrix such that multiplying the factors maps to observed rating data, and by imposing

regularization or prior probabilities on the factor matrices, generalize to unseen entries in the rating

data.

2.2.4 Exponential random graph models

Exponential random graph models (ERG) are prominent in social network analysis [Robins et al.,

1999; Robins et al., 2006; Robins et al., 2007]. Also known as p∗ models, these generative models

represent the probability of a graph structure as a factorized probability over weighted graph motif

statistics. A graph motif is a countable structural pattern that may occur in the network, such as

reciprocated directed links, triangles, stars or cliques of different cardinalities. Since these statistics

are structural, various dependencies between edges arise, and computation of the likelihood is com-

putationally intractable. Thus, various approximation approaches are available for fitting ERG mod-

els. Of note is the maximum pseudo-likelihood approach, in which the pseudo-likelihood is used as

an approximation of the likelihood and maximized to select model parameters. Pseudo-likelihood

is computed by considering only the conditional likelihood of each edge variable conditioned on

all other variables taking their observed state. Other strategies for fitting ERG model parameters

include sampling-based approaches.

CHAPTER 2. LINK PREDICTION 12

2.2.5 Other methods

Various generative models for graphs have been suggested in the literature of overlapping fields of

research. Some notable models include the Erdos-Renyi model [Erdos and Renyi, 1959], in which

edge presence is identically and independently distributed (iid), the Strogatz-Watts model [Newman

et al., 2001], in which nodes are initially connected on a lattice and edges are randomly swapped,

and the preferential attachment model [Albert and Barabási, 2002], in which nodes iteratively join

the network, and the likelihood of attachment to existing nodes is proportional to the existing nodes’

degrees.

The recently proposed Kronecker graph model is an approach for modeling graphs based on

matrix operations. The Kronecker generative graph model describes a process of building a graph

using repeated Kronecker matrix multiplication, the results of which are proven to obey many known

graph properties [Leskovec et al., 2010].

Since edge measurements can themselves be noisy, structural modeling of networks can be used

to denoise these measurements. For example, approximate inference with degree priors has been

used to smooth noisy edge observations in biological networks [Morris and Frey, 2003].

2.3 Link prediction summary

Most of the network modeling approaches summarized in this section handle structure by resorting

to approximations. The degree-based estimation technique studied in this thesis solves its structure-

sensitive objective exactly. The estimation procedure is also flexible in that its edge-likelihoods may

be parameterized or derived from many of the established graph models described in this section,

and thus is complementary to existing approaches.

The graph distance ideas can be used directly to determine edge-likelihoods and combined with

degree likelihoods in the proposed model, as can the likelihoods estimated from latent space models.

The probabilistic model used in this thesis is related to the exponential random graph model, but

inherent differences include the modeling of individual nodes, rather than the anonymous nodes of

ERG models, and the structural motifs being limited to degree counts.

CHAPTER 3. DEGREE-BASED SUBGRAPH ESTIMATION 13

Chapter 3

Degree-Based Subgraph Estimation

Given an input graph, a common task is to prune the input graph to form a smaller graph with

desirable properties. This chapter describes a procedure for pruning a graph that optimizes an

objective dependent on the edges and the node degrees in the pruned graph. The problem can be

interpreted as a generalization of the maximum weight b-matching in combinatorial optimization,

or as maximum likelihood inference in a probabilistic model of graph structure.

From a pure optimization viewpoint, an efficient procedure for obtaining an optimal subgraph

is useful for classical applications such as resource allocation, in which restrictions or costs may

be associated with the degrees of nodes in addition to rewards of edge connectivity. In resource

allocation problems, nodes correspond to both resource producers and consumers, and edges may

correspond to assignments between the producers and consumers. Physical or economic restrictions

may limit or penalize producers who are assigned too many or too few consumers, and vice versa,

leading to a natural application of degree-based subgraph estimation. Well-studied formulations for

these problems, such as the linear assignment problem, allow hard-constraints on degrees, and the

methods in this chapter generalize these formulations to allow penalized degrees, or soft-constraints.

The objective function optimized in this chapter is linear with respect to the binary representa-

tion of the edges and indicator functions for the degrees of each node. This property allows a natural

interpretation of the optimization as a maximum likelihood estimation of a log-linear model.

The main problem is referred to as a subgraph estimation, as opposed to graph estimation to

emphasize the possibility of sparsity in the input graph. If edges are known to be impossible,

they may be omitted in the input graph, alleviating computational load of the solver algorithm. If,

CHAPTER 3. DEGREE-BASED SUBGRAPH ESTIMATION 14

however, graph estimation is desired, in which all edges are possible, a fully-connected graph may

be the input, allowing the estimation procedure to choose from all possible edges.

The remainder of the chapter first introduces the objective, then details the procedure for op-

timizing the objective. The solver reduces the problem to an augmented maximum weight b-

matching, which various known algorithms solve.

3.1 Maximum weight matching and its generalizations

This section introduces the classical problem of maximum weight matching, its generalizations and

variants, leading to the generalization of interest, which will be referred to as degree-based match-

ing. First, we define a general framework for matching-like problems. Given a weighted, undirected

graph G = {V,E,w}, where E is a set of node pairs (u, v) ∈ E, u, v ∈ V , and w(e) 7→ R is a

function that maps edges to their weights, a matching-like problem is solved by finding the induced

subgraph ofG that has maximum weight subject to requirements dependent on the degrees of nodes

in Ĝ. An induced subgraph Ĝ = {V, Ê, w} is a graph that shares the same node set V with G but

whose edge-set Ê ⊆ E is a subset of the original edge-setE. Thus, each problem is an optimization

of the form

Ê = argmax
E′⊆E

∑

(u,v)∈E′
w(u, v) s.t. C(E′),

where C is a set of requirements dependent on the degrees. In the standard maximum-weight match-

ing problem, the degree requirements are that each degree is no more than one, or in the maximum-

weight perfect matching problem, the requirements are that each degree is exactly one.

Generalized matching extends maximum weight matching to allow degrees other than one. In

b-matching problems, the maximum and target degrees are defined by a set of non-negative integers

bv for each v ∈ V , such that in the maximum-weight b-matching problem, each node v must have

degree no more than bv and in the maximum-weight perfect b-matching problem, each node v must

have exactly degree bv. Figure 3.1 illustrates a bipartite b-matching, in which the nodes are divided

into two bipartitions and edges only exist between bipartitions.

A further generalization of b-matching is degree constrained subgraph (DCS), in which each

node’s degree is subject to a lower and upper bound. Thus, degree constrained subgraphs subsume

CHAPTER 3. DEGREE-BASED SUBGRAPH ESTIMATION 15

HUANG AND JEBARA

one, or in the maximum-weight perfect matching problem, the requirements are that each
degree is exactly one.

Generalized matching extends maximum weight matching to allow degrees other than
one. In b-matching problems, the maximum and target degrees are defined by a set of non-
negative integers bv for each v ∈ V , such that in the maximum-weight b-matching problem,
each node v must have degree no more than bv and in the maximum-weight perfect b-
matching problem, each node v must have exactly degree bv. Figure 1 illustrates a simple
bipartite b-matching, in which the nodes are divided into two bipartitions and edges only
exist between bipartitions.

v5 v6 v7 v8

v1 v2 v3 v4

Figure 1: Example bipartite b-Matching. Dashed lines represent possible edges, solid lines
represent b-matched edges. In this case bv = 2 for all nodes.

A further generalization of b-matchings are degree constrained subgraphs (DCS), in
which each node’s degree is subject to a lower and upper bound. Thus, degree constrained
subgraphs subsume perfect and non-perfect b-matchings, e.g., the perfect b-matching prob-
lem can be represented by setting the lower and upper bounds to be equal. DCS also
generalize b-covers, which are graphs where nodes have at most b adjacent edges. Table 1
lists the constraints for each of these generalized matching problems.

Problem Standard constraints Perfect constraints
matching deg(v, E ′) ≤ 1, ∀v ∈ V deg(v, E ′) = 1, ∀v ∈ V

b-matching deg(v, E ′) ≤ bv, ∀v ∈ V deg(v, E ′) = bv, ∀v ∈ V
b-cover deg(v, E′) ≥ bv, ∀v ∈ V deg(v, E ′) = bv, ∀v ∈ V
DCS bv ≤ deg(v, E ′) ≤ b′

v, ∀v ∈ V

Table 1: Constraints for maximum-weight generalized matching problems. Each problem
is solved by maximizing the total weights of active edges subject to the constraints
listed above. The function deg(v, E ′) is the degree of node v in edge-set E ′, i.e.,
the number of edges adjacent to v.

4

Figure 3.1: Example bipartite b-matching. Dashed lines represent possible edges, solid lines repre-

sent b-matched edges. In this case bv = 2 for all nodes.

perfect and non-perfect b-matchings, e.g., the perfect b-matching problem can be represented by set-

ting the lower and upper bounds to be equal. DCS also generalize b-covers, which are graphs where

nodes have at least b adjacent edges. Table 3.1 lists the constraints for each of these generalized

matching problems.

Problem Standard constraints Perfect constraints

matching deg(v,E′) ≤ 1, ∀v ∈ V deg(v,E′) = 1, ∀v ∈ V
b-matching deg(v,E′) ≤ bv, ∀v ∈ V deg(v,E′) = bv, ∀v ∈ V

b-cover deg(v,E′) ≥ bv, ∀v ∈ V deg(v,E′) = bv, ∀v ∈ V
DCS bv ≤ deg(v,E′) ≤ b′v, ∀v ∈ V

Table 3.1: Constraints for maximum-weight generalized matching problems. Each problem is

solved by maximizing the total weights of active edges subject to the constraints listed above. The

function deg(v,E′) is the degree of node v in edge-set E′, i.e., the number of edges adjacent to v.

3.1.1 Degree-based matching

A larger class of problems is the maximum-weight degree-based induced subgraph problem, or

degree-based matching, where the set of feasible induced subgraphs is unconstrained, but instead

penalized according to functions of node degrees. The problem class is so named because these

functions are interpretable as degree-based potentials in a probabilistic interpretation of the maxi-

CHAPTER 3. DEGREE-BASED SUBGRAPH ESTIMATION 16

mum weight induced subgraph problem. Degree-based matching problems are of the form,

Ê = argmax
E′⊆E

∑

(u,v)∈E′
w(u, v) +

∑

v∈V
ψv(deg(v,E′)). (3.1)

The function deg(v,E) indicates the number of neighbors for node v in edge set E′. This class of

problems contains all feasible DCS problems, since any DCS problem can be solved by defining

appropriate ψ degree functions that return zero for all feasible degrees and negative infinity for all

infeasible degrees. However, even though DCS is subsumed by degree-based matching, for concave

degree functions ψ, degree-based matching is no harder than DCS. The remainder of this section

describes a procedure that solves degree-based matching by reducing the problem to an augmented

DCS problem.

CHAPTER 3. DEGREE-BASED SUBGRAPH ESTIMATION 8

v1

v2 v3

v4

(a) Original graph

v1

v2 v3

v4

λ1 λ2 λ3

(b) Augmented graph

Figure 3.2: Example of constructing augmented graph using auxiliary nodes to encode degree pref-

erences. On the left, we are to find a subgraph of a fully connected, four-node graph. On the right,

the augmented graph contains auxiliary nodes. An example b-matching for the original nodes, which

includes edges between original nodes and auxiliary nodes, is marked with bold lines.

for node v is all integers in the range [1, N(v)]. The augmented graph thus contains at most |V | − 1

auxiliary nodes. Each original node v ∈ V is connected to auxiliary nodes {λd | 1 ≤ d ≤ N(v)}
in augmented graph Gλ. This construction creates graph Gλ = {Vλ, Eλ, wλ}, visualized in
Figures 3.2 and 3.3, where

Λ = {λ1, . . . ,λN},

Vλ = V ∪ Λ,

Eλ = E ∪ {(v,λd)|1 ≤ d ≤ N(v), v ∈ V }.

The original edge weights in Gλ retain their original values, i.e., for u ∈ V and v ∈ V ,

wλ(u, v) = w(u, v), and the weight between original node v and auxiliary node λd ∈ Λ for

1 ≤ d ≤ N(v) is

wλ(v,λd) = ψv(d − 1) − ψv(d). (3.4)

The weight of the d’th auxiliary edge is the change in preference from degree d − 1 to degree d.

Consequently, while the ψv functions have outputs for ψv(0), there are no auxiliary nodes labeled

(a) Original graph

v1

v2 v3

v4

ṽ1 ṽ2 ṽ3

1

(b) Augmented graph

Figure 3.2: Example of constructing the augmented graph using auxiliary nodes to encode degree

preferences. On the left, we are to find a subgraph of a fully connected, four-node graph. On the

right, the augmented graph contains auxiliary nodes. An example b-matching for the original nodes,

which includes edges between original nodes and auxiliary nodes, is marked with bold lines.

Reduction of degree-based matching to maximum weight b-matching In instances where the

degree preference functions ψ are concave, a procedure reduces degree-based matching into a b-

matching on an augmented graph. Since, however, the ψ functions need only be defined at valid

degree inputs, define a concave ψ function as a function satisfying

ψv(d)− ψv(d− 1) ≥ ψv(d+ 1)− ψv(d),∀d ∈ N, 1 ≤ d ≤ n(v)− 1, (3.2)

where n(v) is the original degree deg(v,E). I.e., for increasing valid inputs, the change in value of

a concave function decreases.

CHAPTER 3. DEGREE-BASED SUBGRAPH ESTIMATION 17

The procedure for solving degree-based matching augments the original graph with auxiliary

nodes, where edges between original nodes and auxiliary nodes are set such that their total weights

are equivalent to the ψ degree functions, and solves a maximum weight b-matching problem on the

augmented graph.

Algorithm 1 Optimization procedure for degree-based matching.
Require: Input weighted graph G = {V,E,w}, degree preferences {ψv|v ∈ V }, and maximum

weight b-matching solver BMATCHING

1: Create auxiliary nodes Ṽ = {ṽ1, . . . , ṽn}
2: waug ← w

3: Eaug ← E

4: for v ∈ V do

5: for d from 1 to n(v) do

6: Eaug ← Eaug ∪ {(v, ṽd)}
7: waug(v, ṽd)← ψv(d− 1)− ψv(d)

8: end for

9: end for

10: Gaug ← {V ∪ Ṽ , Eaug, waug}
11: Êaug ← BMATCHING(Gaug)

12: Ê ← {(u, v)|(u, v) ∈ Êaug ∧ u, v ∈ V }
13: return Ê

The augmented graph Gaug, contains a copy of the original graph G as well as a set Ṽ of

additional auxiliary nodes. An auxiliary node is created for each possible nonzero degree in in

the graph, which for node v is all integers in the range [1, n(v)]. The augmented graph thus

contains at most |V | − 1 auxiliary nodes. Each original node v ∈ V is connected to auxil-

iary nodes {ṽd | 1 ≤ d ≤ n(v)} in augmented graph Gaug. This construction creates graph

Gaug = {Vaug, Eaug, waug}, visualized in Figures 3.2 and 3.3, where

Ṽ = {ṽ1, . . . , ṽn},

Vaug = V ∪ Ṽ ,

Eaug = E ∪ {(v, ṽd)|1 ≤ d ≤ n(v), v ∈ V }.

CHAPTER 3. DEGREE-BASED SUBGRAPH ESTIMATION 18

The original edge weights in Gaug retain their original values, i.e., for u ∈ V and v ∈ V ,

waug(u, v) = w(u, v), and the weight between original node v and auxiliary node ṽd ∈ Ṽ for

1 ≤ d ≤ n(v) is

waug(v, ṽd) = ψv(d− 1)− ψv(d). (3.3)

The weight of the d’th auxiliary edge is the change in preference from degree d − 1 to degree d.

Consequently, while the ψv functions have outputs for ψv(0), there are no auxiliary nodes labeled

ṽ0 associated with that setting (the value ψv(0) is used to define the weight of edge (v, ṽ1)). The

weightswaug(v, ṽd) are monotonically non-decreasing with respect to the index d due to the concav-

ity of the ψv functions. This is seen by substituting the auxiliary weight formula from Equation (3.3)

for the concavity definition from Equation 3.2,

ψv(d)− ψv(d− 1) ≥ ψv(d+ 1)− ψv(d)

−waug(v, ṽd) ≥ −waug(v, ṽd+1)

waug(v, ṽd) ≤ waug(v, ṽd+1).

This non-decreasing characteristic is crucial to the correctness of this reduction to b-matching. The

construction emulates the optimization from Equation (3.1), which is over edges in G, with an

optimization over edges of Gaug. The degree constraints in the augmented problem are that each

(original) node v must have exactly n(v) neighbors (including any connected auxiliary nodes) and

auxiliary nodes have no degree constraints. The augmented problem is the hard-constrained opti-

mization,

Êaug = argmax
E′aug⊆Eaug

∑

(u,v)∈E′aug

waug(u, v) s.t. deg(v,E′aug) = n(v), ∀v ∈ V. (3.4)

It is important to note that the quantity n(v) in Equation (3.4) is the count of neighbors in the original

graph. The augmented objective can be conceptualized in the following way: the solver is free to

choose any graph structure in the original graph, but is required to maximally select auxiliary edges

using its remaining free edges for each node. As the degree of a node with respect to its original

neighbors changes, its auxiliary degree must change accordingly. Setting the auxiliary edge weights

as described above makes that change equivalent to that of the original degree preference functions.

The following theorem proves this equivalence to the original objective.

CHAPTER 3. DEGREE-BASED SUBGRAPH ESTIMATION 19

Theorem 3.1.1. The total edge weight of the maximum weight subgraph Êaug of augmented graph

Gaug, subject to original nodes having degrees equal to their original neighborhood sizes, differs

from the original objective value, which is the total edge weight plus degree preference functions

ψi, by a fixed additive constant δ. I.e., given graph G = {V,E,w}, where w(u, v) 7→ R for each

edge (u, v) ∈ E, and concave degree preference functions ψv(d) 7→ R for each possible degree d

of node v ∈ V , for any induced edge-set E′ ⊆ E,

∑

(u,v)∈E′
w(u, v) +

∑

v∈V
ψv(deg(v,E′)) + δ =

max
E′aug∩E=E′,E′aug⊆Eaug

∑

(u,v)∈E′aug

wλ(u, v) s.t. deg(v,E′aug) = n(v), ∀v ∈ V,

where δ is a fixed constant independent of E′.

Proof. Consider the edges E′aug ∩ E. The weights of possible edges in this intersection are the

original weights from function w, and the restriction that E′aug ∩E = E′ means these edge sets are

identical and therefore the total weights of w and wλ over these edges are equal.

What remains is to confirm that the total of the ψ degree preference values agree with the

weights of the remaining edges in Êaug \ E, which are edges between original nodes and auxiliary

nodes. Recall that the augmented problem’s degree constraints require each original node in Gaug

to have degree equal to the original neighborhood size n(v). By construction, each node v has

2n(v) available edges from which to choose: n(v) edges from the original graph and n(v) edges to

auxiliary nodes. Moreover, if v selects d original edges, it must maximally select n(v)−d auxiliary

edges. Since the auxiliary edges are constructed such that their weights are non-decreasing, the

maximum n(v) − d auxiliary edges connect to the last n(v) − d auxiliary nodes, namely auxiliary

nodes ṽd+1 through ṽn(v). Thus, for the Theorem 3.1.1 to hold, the change in a ψv preference

function value should equal the change in the maximum weight auxiliary edge choice. Formally,

the change in weight when node v changes its degree from d to d′ is

n(v)∑

j=d+1

w(v, ṽj)−
n(v)∑

j=d′+1

w(v, ṽj)
?= ψv(d)− ψv(d′).

Terms in the summations cancel to show this equivalence. After substituting the definition of

CHAPTER 3. DEGREE-BASED SUBGRAPH ESTIMATION 20

w(vi, ṽd) from Equation (3.3), the desired equality is revealed with some simple algebra, providing

n(v)∑

j=d+1

(ψv(j − 1)− ψv(j))−
n(v)∑

j=d′+1

(ψv(j − 1)− ψv(j))

=

n(v)∑

j=d

ψv(j)−
n(v)∑

j=d+1

ψv(j)−
n(v)∑

j=d′

ψv(j) +

n(v)∑

j=d′+1

ψv(j)

= ψv(d)− ψv(d′).

This means the original objective value for Equation (3.1) and the weight of the augmented graph

change by the same value for different induced subgraphs of G. Hence, the original objective and

the total edge weight of the augmented subgraph differ only by a constant δ.

Since an original node that connects to all of its neighbors connects to no auxiliary edges, the

constant difference δ between the augmented graph weight and the original degree preference score

is determined by nodes’ preference scores for full connectivity. I.e., δ = −∑v∈V ψv(n(v)).

Abstracting a b-matching solver, the algorithm for maximizing objective function (3.1) is sum-

marized in Algorithm 1.

3.1.2 Representing subgraph optimizations with concave degree preferences

The class of problems representable with concave degree preference functions includes k-

nearest neighbors, directed and undirected b-matching and degree-constrained subgraph, and ε-

neighborhood thresholding. This section describes the relationships between these problems and

degree-based matching.

First, it is useful to consider how to model directed degree constraints in the problem setting,

which is formulated for undirected graphs. Directed problems are represented by duplicating the

graph into two bipartitions, each containing copies of the original nodes. One partition represents

the out-edges and the other partition represents the in-edges. This graph4 allows different constraints

for in-degree and out-degree, as well as different weights for each direction of each edge.

4This duplication construction is related to the so-called double-cover, which is a bipartite graph with edges between

copies of the original node sets, with edges between each node and the duplicates of each of its original neighbors. This

construction differs from a standard double-cover because the asymmetric connectivity between the bipartitions.

CHAPTER 3. DEGREE-BASED SUBGRAPH ESTIMATION 21

2 4 6

1

2

3

4

5

6

−0.05

0

0.05

0.1

(a) Original weight matrix

1 2 3 4 5 6
0

0.5

e
x
p

 ψ
1

Degree

1 2 3 4 5 6
0

0.5

e
x
p

 ψ
2

Degree

1 2 3 4 5 6
0

0.5

e
x
p

 ψ
3

Degree

1 2 3 4 5 6
0

0.5

e
x
p

 ψ
4

Degree

1 2 3 4 5 6
0

0.5

e
x
p

 ψ
5

Degree

1 2 3 4 5 6
0

0.5

e
x
p

 ψ
6

Degree

(b) Degree preferences

2 4 6 8 10 12

2

4

6

8

10

12

(c) Augmented weight matrix

2 4 6 8 10 12

2

4

6

8

10

12

(d) Augmented b-matching

2 4 6

1

2

3

4

5

6

(e) Solution

1 2 3 4 5 6
0

1

2

3

4

5

D
e

g
re

e

Node ID

(f) Solution degrees

Figure 3.3: Example of mapping a degree dependent problem to a hard-constrained b-matching.

From left to right, top to bottom: the original weight matrix 3.3(a), original degree prefer-

ences 3.3(b), both of which are used to construct the augmented weight matrix 3.3(c), which is

pruned to an augmented b-matching 3.3(d). From the augmented b-matching, the solution 3.3(e) is

obtained by truncating the auxiliary nodes. The resulting degrees of the nodes 3.3(f) correlate with

the original degree preferences.

CHAPTER 3. DEGREE-BASED SUBGRAPH ESTIMATION 22

The k-nearest neighbor subgraph problem finds, for each node, its k nearest neighbors according

to some affinity values, which often are computed from a distance metric. The k-nearest neighbor

problem differs from b-matching in that k-nearest neighbor graphs are directed; each node greedily

connects to its k closest nodes, regardless of how many connections that neighbor already has.

Using the duplicated-node construction from above, the k-nearest neighbors degree constraints are

representable by concave preference functions which return zero for in-degree k on all nodes and

negative-infinity for every other degree. All out-degree preferences are uniform at zero, and the

weights of the edges are set to node similarity (or negative distance). Thus, the degree preference

functions require in-degree of k but have no influence over out-degree.

Similar degree functions easily encode b-matching in terms of concave preference functions. For

example, perfect b-matching constraints are encoded with degree preference functions that again

output zero at each node’s required degree bv and negative infinity for all other degrees. More

generally, degree-constrained subgraph is encoded by having ψ functions output zero for the range

of allowed degrees and negative infinity otherwise.

Finally, ε-neighborhood thresholding, in which nodes are connected to all neighbors within

distance ε, is encoded by a linear penalty on all nodes’ degrees. Setting each ψv function for all

nodes to ψv(d) = −εd, the maximum subgraph includes any edge with weight greater than ε. This

is because the change to the objective value when an edge is added is the weight of the edge plus

a single penalty ε for increasing the degree by one. Therefore, any edges whose weight is greater

than the penalty will add to the objective and will be active at the maximum.

Computing the maximum weight graph under these simple constraints ranges from trivial to

solvable with classical approaches, but all of these are generalized by concave preference functions.

Thus, applications that use any of these hard-constraints may benefit from generalization to soft

degree preferences.

3.1.3 Degree-based matching as maximum likelihood estimation

The degree-based matching objective may be interpreted as a probability distribution over graph

structures by exponentiating the objective function. The resulting log-probability distribution is

log Pr(E′) =
∑

(u,v)∈E′
w(u, v) +

∑

v∈V
ψv(deg(v,E′))− logZ(w,ψ),

CHAPTER 3. DEGREE-BASED SUBGRAPH ESTIMATION 23

where the partition function Z is

Z(w,ψ) =
∑

E′

exp

 ∑

(u,v)∈E′
w(u, v) +

∑

v∈V
ψv(deg(v,E′))

 .

Computation of this partition function is #P-complete5, and thus marginal inference is intractable.

Such a probabilistic interpretation provides an intuitive relationship between the combinatorial

optimizations subsumed by degree-based matching and statistical problems such as machine learn-

ing and prediction.

For example, in the case that the degree preferences are given but the weights are determined

by some observed data X , the probability may be interpreted as a maximum a posteriori (MAP)

estimation. If the observed data associated with each edge is conditionally independent given the

presence or non-presence of the edge, the weight is equivalent to the gain in log-likelihood as the

edge variable is changed from not present to present,

w(u, v) = log
Pr(X|(u, v) ∈ E′)
Pr(X|(u, v) /∈ E′) .

Thus, the total likelihood of data X is proportional to the exponentiated weight of all included

edges,

Pr(X|E′) ∝ exp

 ∑

(u,v)∈E′
w(u, v)

 .

In this setting, the degree preferences act as a prior probability over edge structures,

Pr(E′) ∝ exp

(∑

v∈V
ψv(deg(v,E′))

)
.

Combining the data likelihood and the edge prior, the resulting optimization is equivalent to the

standard MAP inference formulation

Ê = argmax
E′

Pr(X|E′) Pr(E′).

Using these interpretations may guide model selection in practice. For example, deciding what

function to use to determine the weight between nodes may benefit from the log-likelihood ratio

5Computing this partition function subsumes the computation of the matrix permanent, which is equivalent to the

partition function for a maximum weight matching input problem. The computation of a matrix permanent is #P-complete

[Valiant, 1979].

CHAPTER 3. DEGREE-BASED SUBGRAPH ESTIMATION 24

interpretation. Treating the optimization as a MAP inference allows the choice of degree priors to

filter the observed data from unlikely measurements.

CHAPTER 3. DEGREE-BASED SUBGRAPH ESTIMATION 14

A12 A13 A14

A23 A24

A34

(a) Dependency graph

0 1 2 3 4 5
4

2

0

0 1 2 3 4 5
2

0

2

0 1 2 3 4 5
0

2

4

(b) Valid degree preference functions

Figure 3.4: Left: The dependency graph between edge variables in a four-node graph, where the

activation of edge (vi, vj) is denoted by its entry Aij in the adjacency matrix. Each edge variable is

dependent on the other edges attached to its endpoints, which results in a dense structure. Since we

use an undirected adjacency matrix, only the entries in the upper right triangle are depicted in this

graphical model. Right: Examples of valid degree preference functions. The preference for each

degree is represented by blue bars. The change in the preference value is non-increasing and the

piecewise-linear, interpolated curve, represented by the red curve, is a convex function.

(a) Dependency graph

0 1 2 3 4 5
−4

−2

0

0 1 2 3 4 5
−2

0

2

0 1 2 3 4 5
0

2

4

(b) Valid degree preference functions

Figure 3.4: Left: The dependency graph between edge variables in a four-node graph, where the

activation of edge (vi, vj) is denoted by its entry Aij in the adjacency matrix. Each edge variable is

dependent on the other edges attached to its endpoints, which results in a dense structure. Since we

use an undirected adjacency matrix, only the entries in the upper right triangle are depicted in this

graphical model. Right: Examples of valid degree preference functions. The preference for each

degree is represented by blue bars. The change in the preference value is non-increasing and the

piecewise-linear, interpolated curve, represented by the red curve, is a concave function.

Dependency structure among edge variables Since there is a natural probabilistic interpretation

of the main objective, it may be tempting to use traditional probabilistic inference techniques to

solve the optimization. In the simple case that there are no degree preference functions ψ, the

optimization is over independent, Bernoulli variables representing the presence of each edge, and

can be solved by simply thresholding the weights at zero, such that all positively weighted edges

are included and all negatively weighted edges are excluded. When the node degrees are subject

to nontrivial ψ functions, the objective value for each edge becomes dependent on all other edges

sharing its endpoints.

Figure 3.4(a) contains an example dependency graph of the edge variables, notated in the binary

adjacency matrix form. This densely dependent structure renders standard inference techniques

intractable for nontrivial degree functions. Each matrix entry of the triangulated dependency graph

CHAPTER 3. DEGREE-BASED SUBGRAPH ESTIMATION 25

is part of a single, fully connected clique, so exact inference techniques such as the junction tree

algorithm require time exponential in the node cardinality of the graph.

3.2 Summary of degree-based subgraph estimation

The optimization problem referred to here as degree-based matching is a general form of degree-

based subgraph estimation. The efficient solver described above reduces the problem to a maximum

weight b-matching on an augmented graph. Given the reduction, any polynomial-time b-matching

solver will find the solution. The next chapter investigates a b-matching solver that uses the proba-

bilistic inference technique belief propagation, which passes messages between nodes in the graph

in a distributed manner and is guaranteed to find the solution to a well-defined class of maximum

weight b-matching problems.

This chapter also discusses the probabilistic interpretation for degree-based subgraph estima-

tion, in which the objective function is interpreted as a log-probability distribution over graph struc-

ture. This distribution factorizes into a natural decomposition for graph structures, consisting of

potential functions for edge presence and for node degree. For various types of data and settings,

these potential functions can be modeled such that maximum likelihood graph structure estimation

is useful for machine learning tasks, and Part II discusses some applications of this idea.

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 26

Chapter 4

Belief Propagation for b-Matching

In the previous chapter, the problem of degree-based subgraph estimation is reduced to a maxi-

mum weight b-matching on an augmented graph. This section details a solver for maximum weight

b-matching problems using the approximate probabilistic inference technique known as belief prop-

agation, which is proven to compute the exact solution of the b-matching problem. Algebraic ma-

nipulations of the standard belief propagation update formulas result in an algorithm with simple,

lightweight, parallel update rules that achieve similar asymptotic running time to classical, combina-

torial solvers on a class of b-matching problems, and exhibits comparable solution times in practice.

Additionally, solving the problem with belief propagation allows heuristic speedups, as well as a

naturally parallel algorithm.

4.1 Belief propagation

Belief propagation is an approximate inference technique for Markov random field (MRF) represen-

tations of probability distributions [Pearl, 1988; Wainwright and Jordan, 2008]. A Markov random

field describes a probability distribution function as a product of factors over groups of dependent

random variables, where each non-overlapping pair of groups is considered Markov independent,

or is independent given the states of all other groups. The technique in this section uses a pairwise

MRF, in which all groups are of at most two random variables. Belief propagation assigns beliefs

for each group and passes messages between the groups to resolve inconsistencies. The two main

variants of belief propagation are the sum-product algorithm and the max-product algorithm. The

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 27

sum-product algorithm aims to compute the marginal probabilities of each variable group, which

are the total joint likelihood of each variable state. In contrast, the max-product algorithm aims to

compute the max-marginals of each group, which are the maximum possible joint likelihood given

each state of the group’s variables. This section primarily focuses on the max-product algorithm,

but a discussion of the sum-product algorithm on the Markov random field for maximum-weight

matching, in which the estimated marginals can be used to approximate the matrix permanent, is in

Appendix A.1.

An alternate probabilistic framework to Markov random fields is the factor graph model, in

which probability distributions are expressed as a bipartite graph between variable nodes and fac-

tor nodes. Using the factor graph representation, an alternate derivation of belief propagation for

maximum weight b-matching is available with different intuitions yet the same final resulting al-

gorithm. The factor graph formulation has been used to implement the affinity propagation al-

gorithm [Frey and Dueck, 2006], where reasoning with high-order factor potentials allows a sim-

ilar simplification of message passing as in the main text of this thesis [Givoni and Frey, 2009;

Tarlow et al., 2010].

4.1.1 Related work

This section discusses the use of belief propagation for solving maximum weight b-matchings

[Huang and Jebara, 2007; Huang and Jebara, 2011]. Belief propagation [Pearl, 1988] is essentially a

dynamic programming approach to computing the marginals and max-marginals of a tree-structured

Markov random field. The application in this chapter uses the form of belief propagation known as

max-product, which finds the most likely state of the variables. Belief propagation is used exten-

sively on cyclic graphical models in practice, despite the fact that neither convergence nor correct-

ness of the resulting marginals is guaranteed in general. Theoretical guarantees on the performance

of belief propagation on certain classes of loopy graphical models are thus important. In a graphical

model with a single loop, max-product belief propagation converges and yields the true solution

[Weiss, 2000]. More recently, max-product was proved to converge on a graphical model repre-

senting bipartite maximum weight matching in a bounded number of iterations [Bayati et al., 2005;

Bayati et al., 2008]. A similar analysis extends this result to bipartite b-matchings [Huang and

Jebara, 2007]. In any matching graph, tightness of the linear programming (LP) relaxation is a nec-

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 28

essary and sufficient condition for guaranteed convergence of max-product [Sanghavi et al., 2007;

Wainwright and Jordan, 2008]. While combinatorial algorithms such as balanced network flow

[Fremuth-Paeger and Jungnickel, 1999] solve maximum weight b-matching, the belief propagation

approaches provide lightweight algorithms with simple update formulas that are easily run in paral-

lel. Relatedly, belief propagation has been recently proven to converge on min-cost flow problems,

which can be used to solve b-matching problems [Gamarnik et al., 2010].

Belief propagation has been shown in some cases to have theoretically optimal running time

[Salez and Shah, 2009]. Belief propagation has a constant iteration count for convergence on a

bipartite 1-matching on graphs where the edge costs are drawn independently and identically dis-

tributed (iid) from a light-tailed distribution. Under a light-tailed distribution, large weights are

unlikely, allowing that for any error threshold ε > 0, there exists a number of iterations h(ε) and

graph size N(ε) such that after h(ε) iterations of belief propagation, the fraction of suboptimal

assignments is less than ε. For graphs of size greater than N(ε), the number of iterations to the

convergence threshold does not depend on N . Since each iteration costs O(N2), the total expected

cost of solving a bipartite 1-matching is then O(N2) quadratic, which is also the time required to

read the input.

Faster standard max-product updates are possible by exploiting repeated potentials, which can

be sorted in advance of message updates [McAuley and Caetano, 2010]. Each message update,

which involves a maximization over potential sums, can use the sorted orders such that the expected

running time of each update for variables with N settings is O(
√
N). This speedup is particularly

useful when variables have many possible settings or factors are high-order, which is the case in the

generalized matching function.

4.1.2 Maximum weight matching solvers

Maximum weight matching is one of the most studied combinatorial optimizations in graph theory.

Maximum weight matching in a bipartite graph is equivalent to the assignment problem. Clas-

sical approaches to finding the maximum weight bipartite matching include the augmenting path

algorithm [Jonker and Volgenant, 1979], and the Hungarian algorithm [Munkres, 1957], as well as

converting the problem to a minimum-cost maximum flow problem [Goldberg and Kennedy, 1995].

The non-bipartite matching problem is significantly harder than its bipartite form, and requires ma-

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 29

nipulation of a combinatorial number of structures known as blossoms, which are odd-length cycles

[Edmonds, 1965]. Nevertheless, clever bookkeeping allows for efficient solution of non-bipartite

problems.

Various advances on fast solvers for maximum weight matching have been proposed. For

graphs restricted to nonnegative integer weights, the bipartite maximum weight 1-matching prob-

lem was shown to be solvable in O(
√
|V ||E| log(|V |)) time [Gabow and Tarjan, 1989]. Recently,

an Õ(|V |2.376) randomized algorithm for integer weights which succeeds with high probability was

revealed [Sankowski, 2009]. Subsequently, a (1-ε) approximation algorithm for nonbipartite maxi-

mum weight matching with real weights runs in O(|E|ε−2 log3 |V |) time [Duan and Pettie, 2010].

4.1.3 The max-product algorithm

In a pairwise Markov random field over variables {x1, . . . , xn}, the log-probability of any state is 6

log Pr(X) =
∑

i

Φi(xi) +
∑

ij

Ψij(xi, xj)− logZ(Φ,Ψ),

where Z(Φ,Ψ) is the normalizing partition function. The standard max-product update rules main-

tain a message vector mij from each variable xi to variable xj ,

mt
ij(xj) = max

xi

Φi(xi) + Ψij(xi, xj) +

∑

k 6=j
mt−1
ki (xi)

 ,

which combines incoming messages from all nodes except the message receiver with its own local

potentials to form outgoing messages. Given all incoming messages, the belief at iteration t for

variable state xi combines all incoming messages with the local potential,

Bt(xi) = Φ(xi) +
∑

j

mt−1
ji (xi).

The remainder of this chapter derives the MRF structure and its potential functions for representing

the maximum weight b-matching problem, and describes the algebraic simplifications that provide

scalability improvements.

6In this section, we restrict the MRFs to be pairwise, so we explicitly write the pairwise potentials ψ and singleton

potentials φ. In general, the formula may be a sum over all groups, where the groups may be of any size.

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 30

4.2 Fast belief propagation for maximum weight b-matching

The structure of the maximum weight b-matching problem lends itself to a natural representation as

a Markov random field, in which random variables represent the matching assignments and func-

tions of these random variables represent both the constraints and the weights. Representing the

problem as a probabilistic system means probabilistic inference techniques, which recover the most

likely setting of the random variables, recover the maximum weight b-matching. This section first

describes the probabilistic representation of a maximum weight b-matching, the inference technique

and convergence guarantees, and the simplification steps necessary to reduce the combinatorial

complexity of the default representation, as well as some additional techniques to further reduce

computational complexity in the expected case. The derivations in this section provide the formulas

for perfect b-matchings, but non-perfect b-matchings are also possible [Sanghavi et al., 2007].

In a node-based representation of b-matching [Huang and Jebara, 2007], the b-matching is repre-

sented by variables {xv|v ∈ V }, the values of which represent the neighbors of v in the b-matching

Ê. For example, in Figure 3.1, node v1 is matched with nodes v7 and v8, so the value of xv1 en-

codes the set {v7, v8}. Let function S convert a node variable to its encoded neighbor-set, e.g.,

S(xv1) = {v7, v8}. Since node v must have degree bv, xv has
(n(v)
bv

)
possible settings, each repre-

senting a possible set of bv neighbors. Since likelihoods of independent events are multiplicative,

the additive weights of a maximum weight b-matching problem are represented as log-potentials:

Φu(xu) =
∑

v∈S(xu)

w(u, v). (4.1)

These weight potentials are tied together by pairwise b-matching compatibility functions, which

ensure the agreement between all nodes’ variable states.

Ψuv(xu, xv) =

0 if both variables indicate connectivity (v ∈ S(xu)) ∧ (u ∈ S(xv))

0 if neither variable indicates connectivity (v /∈ S(xu)) ∧ (u /∈ S(xv))

−∞ otherwise (xu and xv disagree).

Using the defined potential functions Φ and the pairwise compatibility functions Ψ, the maximum

weight b-matching objective is equivalent finding the most likely state of variable set {xu|u ∈ V }

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 31

for unnormalized log-likelihood

∑

u∈V
Φu(xu) +

∑

u,v∈V
Ψuv(xu, xv).

The standard max-product algorithm iteratively passes messages vectors between variables and

computes beliefs, which are estimates of max-marginals. The standard update equations for be-

liefs B and messages mu(xv) from variable xu to xv are

mt
uv(xv) = max

xu

Φu(xu) + Ψuv(xu, xv) +

∑

a∈V \v
mt−1
au (xu)

 ,

Bt(xu) = Φu(xu) +
∑

v∈V
mt−1
vu (xu).

To alleviate some notational clutter, define the message from a node to itself as a vector of all zeros.

Section 4.2.2 and Section 4.2.3 include algebraic and algorithmic methods for storing and com-

puting these messages exactly and efficiently, but first, Section 4.2.1 establishes that max-product

converges to the correct solution in a number of iterations linear in the graph size.

4.2.1 Convergence analysis

In general, a cyclic graphical model like the one described above suffers from two possible prob-

lems: the messages may never converge, and they may converge to a state that is not the global

optimum. This section presents a theorem that guarantees neither of these will occur in bipartite

graphs; the algorithm will converge to the true optimum in a bounded number of iterations. The

convergence guarantee is then extended to apply toward maximum weight b-matchings on non-

bipartite graphs whose LP relaxations are tight.

The bipartite convergence guarantee requires two preconditions: first, that the edge weights are

bounded, and, second, that the optimal b-matching is unique. Let weight function w be overloaded

such that, given an input edge set, it outputs the sum of edge weights, w(E) =
∑

e∈E w(e). For

input graph G = {V,E,w, b}, let M(G) be the set of edge sets corresponding to valid b-matchings.

The analysis considers the belief state of a particular node after some iteration of belief propa-

gation. The max-product belief of a node in a loopy graphical model after iteration t is known to be

equivalent to the max-marginal of the node’s unwrapped graph [Weiss, 2000]. The unwrapped

graph is equivalent to the computation tree of messages passed during belief propagation, and

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 32

is constructed by following the message propagation in reverse. Formally, the unwrapped graph

Tv = {V T , ET } of node v ∈ V is rooted by a copy of v, denoted r. We denote this copying

relationship with mapping function τ , which maps nodes in V T to their corresponding nodes in V .

E.g., τ(r) = v. The children of the root are copies of v’s neighbors in G. Then, the children of

each interior node u ∈ V T are the neighbors of τ(u) in G except the node corresponding to u’s

parent. The paths in an unwrapped graph of height h represent all possible non-backtracking walks

of length h in G starting from root node v. The non-backtracking, unwrapped graph construction

is equivalent to the similarly non-backtracking message update rule, such that messages propagated

from the leaves of the unwrapped graph to the root are the same messages passed during loopy be-

lief propagation. Since, however, the unwrapped graph is a tree and contains no cycles, the beliefs

for the root node after propagating messages upwards are the true max-marginals on the tree. For

the b-matching graphical model, this corresponds to a near-perfect maximum weight b-matching on

the tree, where all nodes but the leaf nodes have their exact target degree.

v1

v5 v6 v7 v8

v2 v2 v2 v2v3 v3 v3 v3v4 v4 v4 v4

v6 v7 v8 v6 v7 v8 v6 v7 v8 v5 v7 v8 v5 v7 v8 v5 v7 v8 v5 v6 v8 v5 v6 v8 v5 v6 v8 v5 v6 v7 v5 v6 v7 v5 v6 v7

1

Figure 4.1: Example of an unwrapped graph at three iterations. A tree b-matching is highlighted

based on the b-matching from Figure 3.1. Note that leaf nodes cannot have perfect b-matchings, but

all inner nodes and the root do. One possible alternating path is highlighted, which is discussed in

the convergence proof.

Using the unwrapped graph construction, the following two quantities are equivalent: the num-

ber of iterations of loopy belief propagation on G such that node v’s belief for the optimal b-

matching is guaranteed to exceed the belief for any suboptimal b-matching, and the height of tree

Tv such that the maximum weight b-matching on Tv connects root node r to the corresponding

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 33

neighbors of v in the maximum weight b-matching of G. Thus, the following theorem bounding

the convergence time of belief propagation is proved by analysis of the unwrapped graph in the

Appendix B.

Theorem 4.2.1. Given bipartite input graph G = {V,E,w, b}, such that a unique, optimal b-

matching Ê has weight greater by constant ε than any other b-matching, i.e.,

ε ≤ w(Ê)− max
E′∈M,E′ 6=Ê

w(E′),

and all weights are bounded inclusively between wmin and wmax, i.e.,

wmin ≤ w(e) ≤ wmax, ∀e ∈ E,

the maximum belief at iteration t for any node v ∈ V indicates the corresponding neighbors in true

optimum Ê when t = Ω(|V |).

The convergence conditions are further relaxed to include any maximum weight b-matching

problem for which the linear programming relaxation is tight [Bayati et al., 2007; Bayati et al., To

appear], as claimed in the following theorem

Theorem 4.2.2 (Theorem 3.1 of [Bayati et al., To appear]). Assume that the linear programming

relaxation of the b-matching problem on G has an integer solution and a unique optimum, and that

the weights in G are bounded. Then belief propagation converges to the optimal solution in O(|V |)
iterations.

The proof for Theorem 4.2.2, including rigorous definitions of the LP relaxation is in Ap-

pendix B.

In both the theoretical analysis and our empirical observations, the running time is dependent

on the ε value for the input, and thus, the algorithm is not strongly polynomial. This dependence

causes two scenarios on which belief propagation fails in practice. The first is when ε is zero, which

happens when at least two b-matchings achieve the maximum weight, and the second is when ε

is very small, in which case the number of iterations necessary for convergence is very large. In

theory, adding random noise to the weights corrects the first scenario, but in practice, this tends to

create the second scenario, in which the artificially nonzero ε is quite small. While typical ε’s are

reasonably large enough for fast convergence in many applications, techniques for handling small ε

problems are the subject of future work.

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 34

4.2.2 Message simplification

In this section, a simplified update rule is derived which compactly and exactly computes the stan-

dard max-product message updates by exploiting the fixed structure of the matching compatibility

functions. In the standard max-product algorithm, each message between variables is a vector, with

an entry representing each possible setting of the receiver variable. In the b-matching model, how-

ever, each entry of these message-vectors is always one of two possible values, which, since the

message vectors are scale-invariant, can be summarized as a ratio of the two values. Thus, with

careful bookkeeping, all messages can be compressed to single belief values for each candidate

edge. Updating an edge’s belief-value is possible in time proportional to the number of candidate

neighbors for the source node, again by exploiting the structure of the matching problem to circum-

vent the combinatorially large set of possible states for the source node’s variable. The edge-based

beliefs can then be further summarized per node by unrolling one level of message-passing recur-

sion, resulting in only O(|V |) additional storage during belief propagation.

We exploit three peculiarities of the above formulation to fully represent the
(n(v)
bi

)
length mes-

sages as scalars. First, the Ψuv functions are well structured, and their structure causes the maxi-

mization term in the message updates to always be one of two values:

muv(xv) =

maxxu|v∈S(xu) Φu(xu) +
∑

a|a∈V \vmau(xu) if u ∈ S(xv)

maxxu|v/∈S(xu) Φu(xu) +
∑

a|a∈V \vmau(xu) if u /∈ S(xv)

.

The reason there are only two possible values is because the Ψuv function changes based only on

whether the setting of xv indicates that v shares an edge with u. Furthermore, if we redefine the

above message values as two scalars, we can write the messages as

µuv = max
xu|v∈S(xu)

Φu(xu) +
∑

a∈S(xu)\v
µau +

∑

a/∈S(xu)\v
νau,

νuv = max
xu|v/∈S(xu)

Φu(xu) +
∑

a∈S(xu)\v
µau +

∑

a/∈S(xu)\v
νau,

Second, since the messages are derived from unnormalized log-probabilities, subtracting any con-

stant from the vectors does not change the result. Subtract νuv from all entries in the message vector

to get

µ̂uv = µuv − νuv and ν̂uv = 0.

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 35

This lossless compression scheme simplifies the storage of message vectors from length
(n(v)
bu

)
to a

single scalar per message,

µ̂uv =

 max
v∈S(xu)

Φu(xu) +
∑

a∈S(xu)\v
µ̂au

︸ ︷︷ ︸
Part1

−

 max
v/∈S(xu)\v

Φu(xu) +
∑

a∈S(xu)\v
µ̂au

︸ ︷︷ ︸
Part2

(4.2)

The third exploitable peculiarity of these message updates is that the new scalar representation of

the messages µ̂uv, decompose such that the sums in the positive component and the sums in the

negative component are so similar that most of the computation cancels out. Expanding the variable

potentials Φ inside each maximization, the first maximization (part 1) takes the form

max
v∈S(xu)

∑

a∈S(xu)

w(a, u) +
∑

a∈S(xu)\v
µ̂au.

The constraint on the maximization requires that node the maximizing state xu connects u to v, so

the expression above is equivalently written as

w(u, v) + max
v∈S(xu)

∑

a∈S(xu)\v
(w(a, u) + µ̂au).

The second term (part 2) of Equation (4.2) similarly decomposes, except the maximization con-

straint requires that the state xu does not connect u to v, resulting in the expression

max
v/∈S(xu)\v

∑

a∈S(xu)

w(a, u) +
∑

a∈S(xu)\v
µ̂au = max

v/∈S(xu)\v

∑

a∈S(xu)

(w(a, u) + µ̂au)

Recombining the two expressions, the message update is

µ̂uv = w(u, v) + max
v∈S(xu)

∑

a∈S(xu)\v
(w(a, u) + µ̂au)− max

v/∈S(xu)\v

∑

a∈S(xu)

(w(a, u) + µ̂au)

The terms inside the summations cancel, since the first component contains the bu − 1 greatest

values of w(a, u)+ µ̂au, and the second component contains the bu greatest values, leaving only the

negation of the bu’th greatest entry. The selection operation finds the k’th largest element of a set

for some index k. For notational convenience, denote the selection operation over any set S as

σk(S) = s ∈ S where |{t ∈ S|t ≥ s}| = k.

Then the simplified message update is

µ̂uv = w(u, v)− σbu({w(a, u) + µ̂au|a ∈ V \ v}). (4.3)

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 36

A final algebraic manipulation allows elimination of the messages altogether, resulting in a direct

belief update rule. Using the current simplified message from Equation (4.3), the belief for any state

is

Bt(xu) =
∑

v∈S(xu)

w(u, v) + µ̂tvu,

which is a purely additive combinatorial sum, and thus can be maximized by greedily choosing the

bu greatest values in {w(u, v) + µ̂uv|v ∈ V \ u}. Each of these sums acts as an edge-wise belief

Bt
uv = w(u, v) + µ̂tvu.

Substituting the message update rule (4.3), the following simplifications are available

Bt
uv = w(u, v) + (w(v, u)− σbv({w(a, v) + µ̂av|a ∈ V \ u}))

Since the problem parameterization handles an undirected graph, weights w(u, v) and w(v, u) are

equal, and a constant doubling can be dropped. Furthermore, replacing weight w(a, v) with w(v, a)

inside the selection makes the selection over edge-wise beliefs themselves, leaving the simplified

belief update rule

Bt
uv = w(u, v)− σbv({Bt−1

va |a ∈ V \ u}). (4.4)

Additionally to the simplifications provided so far, the update rule above still contains enough struc-

ture to allow even further scalability improvements, described in the remainder of this section and

the next section.

Memory savings by further unrolling recursion By unrolling the recursion of the belief update

rule, storing full beliefs becomes unnecessary. Instead, all that must be stored are the selected

beliefs, because the selection operation in Equation (4.4) only weakly depends on sender node u.

That is, the selection operation is over all nodes except u, which means the selected value will be

either the bv’th or the (bv + 1)’th greatest element,

σbv({Bt−1
va |a ∈ V \ u}) ∈ {σbv({Bt−1

va |a ∈ V }), σbv+1({Bt−1
va |a ∈ V })}.

Thus, once each row of the belief matrix B is updated, these two selected values can be computed

and stored, and the rest of the row can be deleted from memory. Any further reference to B is

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 37

therefore abstract, as it is never instantiated in practice. Entries of the belief matrix can be computed

in an online manner from the stored selected value. Let αv be the negation of the bv’th selection and

βv be that of the (bv + 1)’th selection. Then the update rules for these parameters are

αtv = −σbv({Bt−1
va |a ∈ V }), βtv = −σbv+1({Bt−1

va |a ∈ V }), (4.5)

and the resulting belief lookup rule is

Bt
uv = w(u, v) +

αtv if (v, u) /∈ Êt−1

βtv otherwise.

At the end of each iteration, the current estimate of Ê is

Êt = {(u, v)|Bt−1
uv ≥ αtu},

which is computed when the α and β values are updated in Equation (4.5). When this estimate is

a valid b-matching, i.e., when all nodes have their target degrees, the algorithm has converged to

the solution. The algorithm can be viewed as simply computing each row of the belief matrix and

performing the selections on that row and is summarized in Algorithm 2.

Using the simplifications described in this section, the running time per iteration is primarily de-

pendent on the time to perform the selection operation. In the worst case, the best known algorithm

is O(N) time to perform select for any k, however the worst-case linear time algorithm is slower

in practice than the expected linear time algorithm QUICKSELECT [Cormen et al., 2001], which is

a QUICKSORT-like recursive partitioning algorithm. In the next section, an even faster algorithm is

described that exploits the structure of the selection operations necessary in this belief propagation

algorithm.

4.2.3 Fast message updates via sufficient selection

This section describes the running time enhancement in the proposed algorithm, which is a vari-

ation of the faster belief propagation algorithm proposed by [McAuley and Caetano, 2010]. The

enhancements aim to reduce the running time of each iteration by exploiting the nature of the quan-

tities being selected. In particular, the key observation is that each belief is a sum of two quantities:

a weight and an α or β value. These quantities can be sorted in advance, outside of the inner (row-

wise) loop of the algorithm, and the selection operation can be performed without searching over the

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 38

Algorithm 2 Belief propagation for b-matching. Computes the maximum weight b-matching.
1: α0

v ← 0,∀v ∈ V
2: β0

v ← 0, ∀v ∈ V
3: Ê0 = ∅
4: t← 1

5: while not converged do

6: for all u ∈ V do

7: αtu ← −σbu({Bt−1
ua |a ∈ V }) {e.g., Algorithm 3}

8: βtu ← −σbu+1({Bt−1
ua |a ∈ V })

9: Êt = {(u, v)|Bt−1
uv ≥ αtu}

10: end for

11: Êt = {(u, v)|Bt−1
uv ≥ αtu}

12: delete αt−1 and βt−1 from memory

13: t← t+ 1

14: end while

entire row, significantly reducing the amount of work necessary. This is done by testing a stopping

criterion that guarantees no further belief lookups are necessary.

Some minor difficulties arise, however, when sorting each component, so the algorithm by

[McAuley and Caetano, 2010] does not directly apply as-is. First, the weights cannot always be

fully sorted. In general, storing full order information for each weight between all pairs of nodes

requires quadratic space, which is too expensive with larger data sets. Thus, the proposed algorithm

instead stores a cache of the heaviest weights for each node. In some special cases, such as when the

weights are a function of Euclidean distance, data structures such as kd-trees can be used to implic-

itly store the sorted weights [Bentley, 1975], or various data structures can compute approximate

nearest-neighbors [Gionis et al., 1999; Maneewongvatana and Mount, 1999]. Such constructions

can provide one possible variant to our main algorithm.

Second, the α-β values require careful sorting, because the true belief updates mostly include

αt terms but a few βt terms. Specifically, the indices that index the greatest bv elements of the

row should use βt. One way to handle this technicality is to first compute the sort-order of the αt

terms and, on each row, correct the ordering using a binary search-like strategy for each index in the

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 39

selected indices. This method is technically a logarithmic time procedure, but requires some extra

indexing logic that creates undesirable constant time penalties. Another approach, which is much

simpler to implement and does not require extra indexing logic, is to use the sort-order of the βt’s

and adjust the stopping criterion to account for the possibility of unseen αt values.

Since the weights do not change during belief propagation, at initialization, the algorithm com-

putes index cache I ∈ N|V |×c of cache size c, which is a parameter set by the user, where entry Iuk

is a pointer to the k’th largest weight neighbor connected to node xu and, for v = Iuk,

w(u, v) = σk({w(u, a)|a ∈ V }).

At the end of each iteration, the βt values are similarly sorted and stored in index vector e ∈ N|V |,

where, for v = ek, entry βtv = σk(β
t
a|a ∈ V }).

The selection operation from (4.5) is then computed by checking the beliefs corresponding to

the sorted weight and β indices. At each step, maintain a set S of the greatest bv + 1 beliefs seen so

far. These provide tight lower bounds on the true α− β values. At each stage of this procedure, the

current estimates for αtv and βtv are

α̃tv ← σbv(S), and β̃tv ← min(S).

Incrementally scan the beliefs for both index lists (I)v and e, computing for incrementing index k,

Bu,Iuk and Bu,ek . Each of these computed beliefs is compared to the beliefs in set S and if any

member of S is less than the new belief, the new belief replaces the minimum value in S.7). This

maintains S as the set of the greatest bv + 1 elements seen so far.

At each stage, the greatest possible unseen belief is bounded by the sum of the least weight

seen so far from the sorted weight cache and the least β value so far from the β cache. Once the

estimate β̃tv is less than or equal to this sum, the algorithm can exit because further comparisons are

unnecessary. Algorithm 3 summarizes the sufficient selection procedure, and Figure 4.2 visualizes

the selection process.

The theorem below verifies that the bound from the sufficient selection procedure holds even

7A small hash table for the indices will indicate whether an index has been previously visited inO(1) time per lookup.

Furthermore, for small values of bv where (bv << |V |), a linear scan through S to find the minimum is sufficiently fast,

but a priority queue can be used to achieve sub-linear time insertion and replacement when bv is large.

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 40

Algorithm 3 Sufficient selection for belief propagation b-matching. Given sort-order of βt values

and partial sort-order of weights, selects the bu’th and bu + 1’th greatest beliefs of node u.
1: k ← 1

2: bound←∞
3: S ← ∅
4: α̃tu ← −∞
5: β̃tu ← −∞
6: while β̃tu < bound do

7: if k ≤ c then

8: v ← Iuk

9: if (v is unvisited and (Bt−1
uv > min(S)) then

10: S ← (S \min(S)) ∪Bt−1
uv

11: end if

12: end if

13: a← ek

14: if (v is unvisited and (Bt−1
ua > min(S)) then

15: S ← (S \min(S)) ∪Bt−1
ua

16: end if

17: bound← w(u, v) + βt−1
a

18: α̃tu ← σbu(S)

19: β̃tu ← σbu+1(S)

20: k ← k + 1

21: end while

22: αtu ← −α̃tu
23: βtu ← −β̃tu

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 41

β

We compute b-selection, and keep a sorted cache of the top weights
Sort messages at beginning of each iteration
Sufficient selection: examine entries corresponding to greatest W and in order.
Stop looking at values after seeing b greater than bound on remaining entries:

�β

Fast b-Matching via Sufficient Selection Belief Propagation Bert Huang and Tony Jebara
bert@cs.columbia.edu, jebara@cs.columbia.edu

Computer Science Department, Columbia University

Maximum Weight Perfect b-Matching

Belief Propagation for b-Matching

References

Experiments: Synthetic DataSaving Space by Unrolling Recursion

Saving Time with Sufficient Selection

Summary

btr bte Time (min.) Belief Lookups % Full
1 6 285.77 4.5992× 1010 0.94%
4 24 306.76 5.2208× 1010 1.11%

β
W

visited, certain at top
visited, uncertain
unvisited
worst-case unvisited

argmax
A

m�

i=1

m+n�

j=m+1

AijW (xi , xj)

s.t.
m+n�

j=1

Aij = bi ,∀i , Aij = Aji ,∀(i , j)

σk(S) = s ∈ S where |{t ∈ S |t ≥ s}| = k.

σbj ({B t−1
jk |k �= i}) ∈ {σbj ({B t−1

jk |k}),σbj+1({B t−1
jk |k})}.

Given sets of node descriptors and ,
target degrees , and weight function W, compute

{x1, ... , xm} {xm+1, ... , xm+n}
{b1, ... , bm+n}

W is any function, e.g., linear kernel, or arbitrary weights, and N = m + n.

Writing b-matching objective as factorized probability distribution,
standard loopy BP is guaranteed to converge to true optimal setting
in O(N) iterations when the LP-relaxation is integral (Huang &
Jebara 2007; Sanghavi et al. 2008).
The simplified belief update rule uses the selection operation, denoted

B t
ij = W (xi , xj)− σbj ({B t−1

jk |k �= i}).

The belief update rule is

The selection operation for each update returns one of two values:

αt
j = −σbj ({B t−1

jk |k}), βt
j = −σbj+1({B t−1

jk |k}).We name these two values

B t
ij = W (xi , xj) +

�
αt

j if At
ji �= 1

βt
j otherwise.

The belief lookup rule is then

Synthetic Gaussian data: 20 dimensional, zero-mean, negative
Euclidean weights

Figure 2. Running time for 1-matching compared to
full BP and (unipartite) Blossom V (Kolmogorov 2009)

MNIST digit matching: Match each test digit to 6b training digits

Figure 3. Running time on synthetic Gaussian data
using different cache sizes (cache size is cN; c = 0 is
equivalent to previous belief propagation algorithm)

Table 1. Running time for full MNIST (60,000 x
10,000 candidate edges). Neither memory nor
running time would be bearable on a PC without the
improvements provided here.

Bert Huang, Tony Jebara

over any set S as

σk(S) = s ∈ S where |{t ∈ S|t ≥ s}| = k.

Belief propagation maintains a belief value for each
edge, which, in the dense case, is conveniently repre-
sented as a matrix B, where entry Bt

ij is the belief
value for the edge between xi and xj at iteration t.
The simplified update rule for each belief is

Bt
ij = W (xi, xj) − σbj ({Bt−1

jk |k $= i}). (1)

In the above equation and for the remainder of this
text, indices range from 1 to (m+n), unless otherwise
noted, and are omitted for cleanliness.

The key insight for reducing memory usage is that the
full beliefs never need to be stored (not even the com-
pressed messages). Instead, by unrolling one level of
recursion, all that need to be stored are the selected
beliefs, because the selection operation in Equation
(1) only weakly depends on index i. That is, the se-
lection operation is over all indices excluding i, which
means the selected value will be either the bj ’th or the
bj + 1’th greatest element,

σbj ({Bt−1
jk |k $= i}) ∈

{σbj ({Bt−1
jk |k}), σbj+1({Bt−1

jk |k})}.

Thus, once each row of the belief matrix B is updated,
these two selected values can be computed and stored,
and the rest of the row can be deleted from memory.
Any further reference to B is therefore abstract, as
it will never be fully stored. Any entry of the belief
matrix can be computed in an online manner from the
stored selected value. Let αj be the negation of the
bj ’th selection and βj be that of the bj +1’th selection.
Then the update rules for these parameters are

αt
j = −σbj ({Bt−1

jk |k}), βt
j = −σbj+1({Bt−1

jk |k}), (2)

and the resulting belief lookup rule is

Bt
ij = W (xi, xj) +

{
αt

j if At
ji = 1

βt
j otherwise.

(3)

After each iteration, the current estimate of A is

At
ij =

{
1 if Bt−1

ij ≥ αt
i

0 otherwise,

which is computed when the α and β values are up-
dated in Equation (2). When this estimate is a valid
b-matching, i.e., when the columns of Aij sum to their
target degrees, the algorithm has converged to the so-
lution. The algorithm can be viewed as simply com-
puting each row of the belief matrix and performing
the selections on that row and is summarized in Algo-
rithm 1.

Algorithm 1 Belief Propagation for b-Matching.
Computes the adjacency matrix of the maximum
weight b-matching.

1: α0
j , β

0
j ← 0, ∀j

2: A0 ← [0]
3: t ← 1
4: while not converged do
5: for all j ∈ {1, . . . , m + n} do
6: At

jk ← 0, ∀k

7: αt
j ← σbj ({Bt−1

jk |k}) {Algorithm 2}
8: βt

j ← σbj+1({Bt−1
jk |k})

9: for all {k|Bt−1
jk ≥ αt

j} do

10: At
jk ← 1

11: end for
12: end for
13: delete At−1, αt−1 and βt−1 from memory
14: t ← t + 1
15: end while

2.3 Sufficient Selection

This section describes the running time enhancement
in the proposed algorithm, which is a variation of
the faster belief propagation algorithm proposed by
McAuley and Caetano (2010). The enhancements aim
to reduce the running time of each iteration by ex-
ploiting the nature of the quantities being selected. In
particular, the key observation is that each belief is a
sum of two quantities: a weight and an α or β value.
These quantities can be sorted in advance, outside of
the inner (row-wise) loop of the algorithm, and the se-
lection operation can be performed without searching
over the entire row, significantly reducing the amount
of work necessary. This is done by testing a stopping
criterion that guarantees no further belief lookups are
necessary.

Some minor difficulties arise, however, when sorting
each component, so the algorithm by McAuley and
Caetano (2010) does not directly apply as-is. First,
the weights cannot always be fully sorted. In general,
storing full order information for each weight between
all pairs of nodes requires quadratic space, which is im-
possible with larger data sets. Thus, the proposed al-
gorithm instead stores a cache of the heaviest weights
for each node. In some special cases, such as when
the weights are a function of Euclidean distance, data
structures such as kd-trees can be used to implicitly
store the sorted weights. This construction can pro-
vide one possible variant to our main algorithm.

Second, the α-β values require careful sorting, because
the true belief updates mostly include αt terms but a
few βt terms. Specifically, the indices that index the
greatest bj elements of the row should use βt. One way

Fast b-Matching via Sufficient Selection Belief Propagation

to handle this technicality is to first compute the sort-
order of the αt terms and, on each row, correct the
ordering using a binary search-like strategy for each
index in the selected indices. This method is techni-
cally a logarithmic time procedure, but requires some
extra indexing logic that creates undesirable constant
time penalties. Another approach, which is much sim-
pler to implement and does not require extra indexing
logic, is to use the sort-order of the βt’s and adjust
the stopping criterion to account for the possibility of
unseen αt values.

Since the weights do not change during belief propa-
gation, at initialization, the algorithm computes index
cache I ∈ N(m+n)×c of cache size c, which is a param-
eter set by the user, where entry Iik is the index of
the k’th largest weight connected to node xi and, for
u = Iik,

W (xi, xu) = σk({W (xi, xj)|j}).

At the end of each iteration, the βt values are similarly
sorted and stored in index vector e ∈ Nm+n, where,
for v = ek, entry βt

v = σk(βt
j |j}).

The selection operation from (2) is then computed by
checking the beliefs corresponding to the sorted weight
and β indices. At each step, maintain a set S of the
greatest bj + 1 beliefs seen so far. These provide tight
lower bounds on the true α − β values. At each stage
of this procedure, the current estimates for αt

j and βt
j

are

α̃t
j ← σbj (S), and β̃t

j ← min(S).

Incrementally scan the beliefs for both index lists (I)j

and e, computing for incrementing index k, BiIik
and

Biek
. Each of these computed beliefs is compared to

the beliefs in set S and if any member of S is less
than the new belief, the new belief replaces the mini-
mum value in S.1). This maintains S as the set of the
greatest bj + 1 elements seen so far.

At each stage, we bound the greatest possible unseen
belief as the sum of the least weight seen so far from the
sorted weight cache and the least β value so far from
the β cache. Once the estimate β̃t

j is less than or equal
to this sum, the algorithm can exit because further
comparisons are unnecessary. Algorithm 2 summarizes
the sufficient selection procedure.

1A small hash table for the indices will indicate whether
an index has been previously visited in O(1) time per
lookup. For small values of bj where (bj << n + m), a
linear scan through S to find the minimum is sufficiently
fast, but a priority queue can be used to achieve sub-linear
time insertion and replacement when bj is large.

Algorithm 2 Sufficient Selection. Given sort-order of
βt values and partial sort-order of weights, selects the
bj ’th and bj + 1’th greatest beliefs of row j.

1: k ← 1
2: bound ← ∞
3: S ← ∅
4: α̃j

t ← −∞
5: β̃j

t ← −∞
6: while β̃j

t
< bound do

7: if k ≤ c then
8: u ← Ijk

9: if (u is unvisited and (Bt−1
ju > min(S)) then

10: S ← (S \ min(S)) ∪ Bt−1
ju

11: end if
12: end if
13: v ← ek

14: if (v is unvisited and (Bt−1
jv > min(S)) then

15: S ← (S \ min(S)) ∪ Bt−1
jv

16: end if
17: bound ← W (xj , xu) + βt−1

v

18: α̃t
j ← σbj (S)

19: β̃t
j ← σbj+1(S)

20: k ← k + 1
21: end while
22: αt

j ← α̃t
j

23: βt
j ← β̃t

j

2.4 Implementation Details

The implementation of Algorithms 1 and 2 used in
the experiments of Section 3 is in C. To perform the
initial iteration, during which the weight cache is con-
structed, our program uses the Quick Select algorithm,
which features the same pivot-based partitioning strat-
egy as Quick Sort to perform selection in (average case)
O(N) time per node (Cormen et al., 2001). For low-
dimensional data and distance-based weights, we can
run the same selection using a kd-tree and provide the
index cache as an input to the program. 2

2.5 Analysis

In this section, we analyze the correctness, space and
running time requirements of the proposed algorithm.
First, we verify that the bound from the sufficient se-
lection procedure holds even though it is computed
using only the βt

j values, when many of the beliefs are
actually computed using αt

j values.

Claim 1. At each stage of the scan, where set S con-
tains the bj + 1 greatest beliefs corresponding to the
first through k’th indices of (I)j and e, the following

2A newer C++ version of the solver is available at
http://www.cs.columbia.edu/~bert/code/bmatching/.

Space: . We unroll recursion, and characterize beliefs
with two vectors instead of matrix.

Time: . We compute message updates via sufficient
selection, based on faster BP by McAuley & Caetano (2010).

N × 1 N × N

Maximum weight perfect b-matching (b-matching) is useful for resource
allocation, semi-supervised learning, spectral clustering, graph
embedding, and manifold learning.

Posing b-matching as probabilistic inference yields a lightweight belief
propagation (BP) solver: O() time and O() space for a dense graph
of N nodes (Huang & Jebara 2007).

We provide two speedups that significantly improve the scalability of BP
for b-matching.

N3 N2

BP stores matrix of beliefs: O() additional space.

Using classical selection algorithms, each row takes O(N) to
update, O() per iteration, O() total work until convergence.

N2N × N

N2 N3

The , beliefs and the current
estimate for A can be computed by
looking at one row at a time, and the full B
matrix need never be stored in memory.

�α �β

Each belief row is an element-wise sum of two vectors and or W (xi , ·) �α �β

McAuley & Caetano (2010) exploited similar structure by pre-sorting each vector,
computing maximization in expected O() time

√
N

Figure 1. Visualization of sufficient selection. Selecting W + , we
can stop once b points are green. Red points are unvisited, and in
the worst case are located at the gray dot.

β

Theorem 1. Considering the element-wise sum of two real-valued vectors of
length N with independently random sort orders, the expected number of
elements that must be compared to compute the selection of the b'th greatest
entry is σb({wi + βi |i}) O(

√
bN).

Experiments: MNIST Digits

Figure 4. Running times for matching subsampled
MNIST data using different cache sizes.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

n+m

(s
ec

on
ds

 p
er

 it
er

at
io

n)
(1

/2
) Averaged over 150 runs per size

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

n+m

(b
el

ie
f l

oo
ku

ps
 p

er
 it

er
at

io
n)

(1
/2

)

Averaged over 150 runs per size

c = 0.00
c = 0.05 (m+n)
c = 0.15 (m+n)
c = 1.00 (m+n)

c = 0.00
c = 0.05 (m+n)
c = 0.15 (m+n)
c = 1.00 (m+n)

0 200 400 600 800 1000 1200
0

20

40

60

80

100

Cache Size

Ti
m

e
(m

in
ut

es
)

btr = 1, bte = 6

btr = 2, bte = 12

btr = 3, bte = 18

btr = 4, bte = 24

btr = 5, bte = 30

0 200 400 600 800 1000
0

10

20

30

n+m

tim
e

(s
ec

on
ds

)

Averaged over 1300 runs per size

Sufficient BP
Full BP
BlossomV

B. Huang and T. Jebara. Loopy belief propagation for bipartite
maximum weight b-matching. AISTATS 2007

V. Kolmogorov. Blossom v: a new implementation of a minimum
cost perfect matching algorithm. Math. Programming Comp. 2009

J. McAuley and T. Caetano. Exploiting data-independence for fast
belief-propagation. ICML 2010

S. Sanghavi, D. Maliotov, A. Willsky. Linear programming analysis of
loopy belief propagation for weighted matching. NIPS 2007

greatest unseen entry (least W so far) + (least so far)≤ β

Acknowledgements/Notes
This work was supported by DHS Contract N66001-09-C-0080–“Privacy
Preserving Sharing of Network Trace Data (PPSNTD) Program”

Thanks to T. Caetano and B. Shaw for helpful discussions.

Code is available at http://www.cs.columbia.edu/~bert/code/bmatching/

Bert is graduating this summer. Contact him with
employment and collaboration opportunities:
bert@cs.columbia.edu, http://berthuang.com

B t
11 ... B t

1N
...

. . .
...

B t
N1 ... B t

NN

O(N2)→ O(N).

O(N3)→ O(N2.5).

Figure 4.2: Visualization of the sufficient selection process. All points to the right of the vertical

red line and above the horizontal red line have been visited, all points in the bottom left quadrant

are unknown, but none of them can have greater magnitude than the corner gray point. Thus,

the green points with greater magnitude than the gray, worst-case unseen point are certainly the

greatest-magnitude points.

though it is computed using only the β values, when many of the beliefs are actually computed

using α values.

Theorem 4.2.3. At each stage of the scan, where set S contains the bu + 1 greatest beliefs corre-

sponding to the first through k’th indices of (I)u and e, the following properties are invariant: the

current estimates bound the true values from below, α̃tu ≤ αtu, β̃tu ≤ βtu, and the greatest unexplored

belief is no greater than the sum of the least cached weight and the least βt−1
u value,

w(u, v) + βt−1
a ≥ max

({
Bt−1
u` |` ∈ {ek+1, . . . , em+n

})
, (4.6)

where u = Ijk and v = ek.

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 42

Proof. The first two inequalities follow from the fact that the algorithm is selecting from but has

not necessarily seen the full row yet. The third inequality (4.6) is the result of two bounds. First,

the beliefs in the right-hand side can be expanded and bounded by ignoring the conditional in the

belief update rule and always using βt−1
` :

W (xj , x`) + βt−1
` ≥ Bt−1

j` .

By definition αt−1
` ≤ βt−1

` , since the former is the negation of a larger value than the latter. A

sufficient condition to guarantee Inequality (4.6) is then

W (xj , xu) + βt−1
v ≥ max({W (xj , x`) + βt−1

` |`}),

where ` is in the remaining unseen indices as in (4.6). Since each component on the left-hand side

has been explored in decreasing order, the maximization on the right can be broken into independent

maximizations over each component, and neither can exceed the corresponding value on the left.

Thus, the algorithm will never stop too early. However, the running time of the selection opera-

tion depends on how early the stopping criterion is detected. In the worst case, the process examines

every entry of the row, with some overhead checking for repeat comparisons. For random order-

ings of each dimension (and no truncated cache size), the expected number of belief comparisons

necessary is O(
√
N) to find the maximum, where, in our case N = m + n = |V | [McAuley and

Caetano, 2009; McAuley and Caetano, 2010]. We show that selection is computable withO(
√
bN)

expected comparisons. However, for problems where the orderings of each dimension are nega-

tively correlated, the running time can be worse. In the case of b-matching, the orderings of the

beliefs and potentials are in fact negatively correlated, but in a weak manner. We first establish

the expected performance of the sufficient selection algorithm under the assumption of randomly

ordered β values.

Theorem 4.2.4. Considering the element-wise sum of two real-valued vectors ~w and ~β of length N

with independently random sort orders, the expected number of elements that must be compared to

compute the selection of the b’th greatest entry σb({wi + βi|i}) is
√
bN .

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 43

Proof. The sufficient selection algorithm can be equivalently viewed as checking element-wise

sums in the sort orders of the ~w and ~β vectors, and growing a set of k indices that have been

examined. The algorithm can stop once it has seen b entries that are in the first k of both sort orders.

We first consider the algorithm once it has examined k indices of each vector, and derive the

expected number of entries that will be in both sets of k greatest entries. Since the sort orders of

each set are random, the problem can be posed as a simple sampling scenario. Without loss of

generality, consider the set of indices that correspond to the greatest k entries in ~w. Examining the

greatest k elements of ~β is then equivalent to randomly sampling k indices from 1 to N without

replacement. Thus, the probability of any of the k greatest entries of ~β being sampled is k/N , and,

since there are k of these, the expected number of sampled entries that are in the greatest k entries

of both vectors is k2/N .

Finally, to determine the number of entries the algorithm must examine to have, in expectation,

b entries in the top k, we simply solve the equation b = k2/N for k, which yields that when

k =
√
bN , the algorithm will in the expected case observe b entries in the top k of both lists and

therefore completes computation.

Applying the estimated running time to analysis of the full matching algorithm, the following

arguments describe the scaling behavior of the algorithm. Assuming the β messages and the weight

potentials are randomly, independently ordered, and a constant b, then the total running time for

each iteration of belief propagation for b-matching with sufficient selection is O(N1.5), and the

total running time to solve b-matching is O(N2.5).

It is important to point out the differences between the assumptions in Theorem 4.2.4 and why

they do not always hold in real data scenarios. When nodes represent actual objects or entities

and the weights are determined by a function between nodes, the weight values have dependencies

and are therefore not completely randomly ordered. Furthermore, the β values change during belief

propagation according to rules that depend on the weights, and in some cases can cause the selection

time to grow to O(N). Nevertheless, in many sampling settings and real data generating processes,

the weights are random enough and the messages behave well enough that sufficient selection yields

significant speed improvements.

Finally, the space requirement for this algorithm has been reduced from the O(N2) beliefs

(or messages) of the previous belief propagation algorithm to O(N) storage for the α and β val-

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 44

ues of each row. Naturally, this improvement is most beneficial in settings where the weights are

computable from an efficient function, whereas if the weights are arbitrary, they must be explicitly

stored at the cost of O(N2) memory. In most machine learning applications, however, the weights

are computed from functions of node descriptor pairs, such as Euclidean distance between vectors

or kernel values. In these applications, the algorithm needs only to store the node descriptors, the α

and β values and, during the computation of Algorithm 3,O(N) beliefs (which can be immediately

deleted before computing the next row). The weight cache addsO(cN) space, where we consider c

a user-selected constant. Appendix A includes some additional heuristics for implementation of the

belief propagation b-matching algorithm.

The space reduction is also significant for the purposes of parallelization. The computation of

belief propagation is easy to parallelize, but the communication costs between processors can be

prohibitive. With the proposed algorithm, each computer in a cluster stores only a copy of the node

descriptors and the current α and β values. At each iteration, the cluster must share the 2N updated

α and β values. This is in contrast to previous formulations where O(N2) messages or beliefs

needed to be transmitted between computers at each iteration for full parallelization. Thus, when it

is possible to provide each computer with a copy of the node descriptor data, an easy parallelization

scheme is to split the row updates between cluster computers at each iteration.

4.2.4 Parallel computation

At each iteration, each node independently updates its beliefs by running Algorithm 3 given the

previous iterations’ α and β vectors. This process is easily parallelizable by delegating the selection

operations for nodes to different processors. Using this simple parallelization scheme, each com-

puter stores the weights for the nodes it is responsible for (or the node descriptors), and a central

computer collects and distributes the computed α and β vectors. At each iteration, the central com-

puter sends the latest belief vectors to each worker, as well as the current b-matching assignment

for the nodes each worker is responsible for. After each worker computes its new belief values, it

sends these new belief values and the new b-matching assignments back to the central computer.

The communication cost is significantly reduced by the unrolled recursion, resulting in the central

computer sending anO(N) vector to each node at each iteration and receivingO(1) data back after

computation. The pseudocode for such a parallelization scheme is nearly identical to Algorithm 2,

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 45

except the for-loop distributes work to different nodes rather than iterating sequentially.

To avoid centralizing the process, each computer can store all of the node descriptors (or only

the weights associated with assigned nodes) as well as belief vectors, sending and receiving updates

from all other nodes at each iteration. In this case, each node sends O(1) data to each other node

at each iteration, which results in an overall bandwidth usage of O(N2) per iteration, the same as

in the centralized version. A decentralized version makes pre-sorting the β vector for sufficient

selection more difficult, and including a decentralized parallel sort procedure that is efficient in

practical parallel computing scenarios remains future work. Note that in cases where either parallel

variant cannot perform exact synchronization, the belief propagation algorithm is still guaranteed to

converge [Bayati et al., To appear].

4.2.5 Empirical evaluation of sufficient-selection belief propagation for b-matching

Running time: synthetic and real data This section contains the results from experiments ex-

ploring the scaling behavior of the belief propagation algorithm for perfect bipartite b-matching. In

particular, the experiments will show that the theoretical expected running time accurately predicts

a significant running time improvement in practice on both synthetic weights and weights based on

real data. The running time of the sufficient selection algorithm is measured and compared against

three baseline methods: the standard belief propagation algorithm, which is equivalent to setting the

proposed algorithm’s cache size to zero, a compact C implementation of a push-relabel min-cost

flow algorithm for the assignment problem [Goldberg and Kennedy, 1995], and, for reference, the

Blossom V code by Kolmogorov [Kolmogorov, 2009], which is considered to be a state-of-the-art

maximum weight non-bipartite matching solver. The non-bipartite matching problem is a signif-

icantly harder combinatorial optimization than the bipartite matching problem, but Blossom V is

extremely optimized and provides another reference point for comparison.

For all experiments, node descriptors are sampled from zero-mean, spherical Gaussian distri-

butions with variance 1.0, the weight function returns negative Euclidean distance, and we sample

bipartitions of equal size (m = n = N/2). In the first experiment, points are sampled from R20.

Using different cache sizes, the running time of the algorithm is measured for varying point set

sizes from 10 to 3000. We set bi = 1,∀i. We measure the running time using actual CPU time.

The square roots of per-iteration running times are drawn in Figure 4.3(a). For a cache size of zero,

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 46

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

m+n

(S
e

c
o

n
d

s
 p

e
r

it
e

ra
ti
o

n
)(1

/2
)

c = 0.00

c = 0.05 (m+n)

c = 0.15 (m+n)

c = 1.00 (m+n)

(a) Gaussian data, time per iteration

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

m+n

(S
e

c
o

n
d

s
 p

e
r

it
e

ra
ti
o

n
)(1

/2
)

c = 1.00 (m+n)
0.5

c = 2.00 (m+n)
0.5

c = Inf (m+n)
0.5

(b) Gaussian data, O(
√
n) cache

0 200 400 600 800 1000
10

−2

10
−1

10
0

10
1

10
2

m+n

S
e
c
o
n
d
s

Sufficient BP

Full BP

Blossom V

Push−Relabel

(c) Gaussian data, comparison w/ push-relabel

min-cost flow and Blossom V

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

Number of digits

S
e

c
o

n
d

s

c=0

c=0.05(m+n)

c=0.15(m+n)

c=1.00(m+n)

(d) Subsampled MNIST, running time

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

Number of digits

(S
e

c
o

n
d

s
 p

e
r

it
e

ra
ti
o

n
)1

/2

c=0

c=0.05(m+n)

c=0.15(m+n)

c=1.00(m+n)

(e) Subsampled MNIST, time per iteration

0 200 400 600 800 1000 1200
10

0

10
1

10
2

Cache Size

T
im

e
 (

m
in

u
te

s
)

b = 1, 6

b = 2, 12

b = 3, 18

b = 4, 24

b = 5, 30

(f) Subsampled MNIST, varying cache size

Figure 4.3: Timing results of fast belief propagation on various input formats. Figures 4.3(a)

and 4.3(b) compare different cache sizes, where in 4.3(a), the cache size a constant scaling of the

input size, and in 4.3(b), the cache size is a scaling of the square root of the input size. Figure 4.3(c)

compares 1-matchings against a min-cost flow solver and the Blossom V algorithm. Figure 4.3(d)

shows the solution time for subsampled MNIST digits of different sizes, and Figure 4.3(e) plots the

root time per iteration as in the synthetic plots. Finally, for 10% of the full MNIST set, Figure 4.3(f)

plots the total solution time for varying cache sizes. Diminishing returns are evident for higher

cache sizes. See Table 4.1 for results on the full MNIST set.

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 47

where the algorithm is default belief propagation, the running time per iteration scales quadratically

and that for non-zero cache sizes, the running time scales sub-quadratically. This implies that, at

least for random, iid, Gaussian data and Euclidean weights, the weights and β values are uncorre-

lated enough to achieve the random permutation case speedup.

For the second experiment, node descriptors are drawn from R5, and we compare 1-matching

performance between sufficient selection belief propagation, full belief propagation, push-relabel

flow, and the Blossom V code by Kolmogorov. For sufficient selection, we set the cache size to

c = 2
√
m+ n, varying the point set size from 10 to 1000. In this case, there is no equivalent notion

of per-iteration time for the combinatorial solvers, so we compare the full solution time. The min-

cost flow solver is the fastest by a significant factor, with interactive-speed solution times at these

graph-sizes, and the sufficient selection method brings the belief propagation algorithm much closer

to the minimal scaling behavior of the min-cost flow solver.

All running time tests on synthetic data were run on a personal computer with an 8-core 3 GHz

Intel Xeon processor (though each run was single-threaded). Figure 4.3 contains plots of all the

running time experiments discussed in this section.

Handwritten digits We perform timing tests on the MNIST digits data set [LeCun et al., 2001],

which contains 60k training and 10k testing handwritten digit images. The images are centered,

and represented as 28× 28 pixel grayscale images. We use principle components analysis (PCA) to

reduce the 784 pixel dimensions of each image to the top 100 principle eigenvector projections. We

use negative Euclidean distance between PCA-projected digits as edge weights, and time sufficient

selection belief propagation on a subsampled data set with varying cache sizes. In particular, for this

test, we sample 10% of both the training and testing sets, resulting in 6000 training and 1000 testing

digits. We generate feasible b-matching constraints by setting the target degree btr ∈ {1, . . . , 5} for

the training points and the target degree bte for testing points to bte = 6btr (since there are six times

as many training points).

Since there are a large number of candidate edges between training and testing examples, any

algorithm that stores and updates beliefs or states for each edge, such as the original belief propaga-

tion algorithm [Huang and Jebara, 2007] or the Blossom V algorithm [Kolmogorov, 2009] cannot

be run on most computers without the use of expensive virtual memory swapping. Thus, we only

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 48

compare the running times of linear memory b-matching belief propagation as described in Sec-

tion 4.2.2 using different cache sizes. Using random subsamples of the MNIST data set, the average

running times are plotted in Figure 4.3 against different input sizes and different cache sizes.

These timing tests were run on a Mac Pro with an 8-core 3 GHz Intel Xeon processor, each

b-matching job running on only a single core. The results show that for a cache size of 200, the

solution time is reduced from around an hour to fewer than ten minutes. Interestingly, the running

time for larger b values is less, which is because belief propagation seems to converge in fewer

iterations. For larger cache sizes, we achieve minimal further improvement in running time; it

seems that once the cache size is large enough, the algorithm finishes selection before running out

of cached weights.

Finally, using a cache size of 3500, finding the minimum distance matching for the full MNIST

data set, which contains six hundred million candidate edges between training and testing examples,

took approximately five hours for btr = 1 and btr = 4. The statistics from each run are summarized

in Table 4.1. As in the synthetic examples, we count the number of belief lookups during the

entire run and can compare against the total number that would have been necessary had a standard

selection algorithm been used (which is (m+n)2 per iteration). The running time is approximately

100 times faster than the estimated time for belief propagation with naive selection.

Table 4.1: Running time statistics on the full MNIST data set. Matching the full MNIST training set

to the testing set considers 7000 nodes and 600 million edges. The table columns are, from left to

right, the target degrees btr and bte for training and testing nodes, raw running time for b-matching

in minutes, the total number of belief lookups during the entire run, and the percentage of the belief

lookups that would have been necessary using naive belief propagation (% Full).

btr bte Time (min.) Belief Lookups % Full

1 6 285.77 4.5992× 1010 0.94%

4 24 306.76 5.2208× 1010 1.11%

CHAPTER 4. BELIEF PROPAGATION FOR B-MATCHING 49

4.3 Summary of fast belief propagation for maximum weight b-

matching

This chapter details a belief propagation solver for maximum weight b-matching, including its

derivation, theoretical analysis, and empirical evaluation. The algorithm is derived by construct-

ing a Markov random field that encodes the objective function of maximum weight b-matching,

then simplifying the max-product algorithm by exploiting redundancy and structure in the update

formulas. The resulting algorithm is lightweight, parallelizable, and theoretically interesting for its

guaranteed convergence.

In the context of this thesis, this solver serves as a driver for degree-based subgraph estimation,

combining the procedure in Chapter 3 with the algorithm in this section. The next part of the thesis

is a series of chapters describing various applications using degree-based subgraph estimation with

a belief propagation driver. Additionally, Appendix A contains various heuristics to further improve

the scalability of the belief propagation b-matching solver.

50

Part II

Applications

CHAPTER 5. GRAPH-BASED MACHINE LEARNING 51

Chapter 5

Graph-Based Machine Learning

In addition to direct application for network analysis, graph-based methods are effective for classical

learning and information retrieval applications. Maximum weight b-matching is useful for manifold

learning, graph embedding, clustering, semi-supervised learning, and content and advertisement

distribution [De Francisci Morales et al., 2011; Jebara and Shchogolev, 2006; Jebara et al., 2009;

Mehta et al., 2007; Shaw and Jebara, 2007; Shaw and Jebara, 2009]. For the problem of classifica-

tion, in which the task is to label data points, an effective graph-based strategy is to construct a graph

connecting similar points and propagate labels along the edges, from labeled points to unlabeled

points. In the supervised learning setting, a set of labeled training points is used to predict labels

for a set of unlabeled testing points. In the semi-supervised learning setting, a third set of unlabeled

points is available for which predictions are not needed, but may be used to better characterize the

distribution over data.

For various reasons, the common approach for graph construction is k-nearest neighbors. The

natural intuition behind this approach is that each unlabeled point is likely to share the same la-

bel with its k nearest neighbors. This intuition primarily comes from human experience, where

distances are well behaved in the natural two-dimensional or three-dimensional world. However,

various factors such as high-dimensional geometry cause these intuitions to misrepresent behavior

in real data. This chapter provides experimental evidence that other graph construction algorithms

in the family of degree-based matching have various advantages over k-nearest neighbors.

CHAPTER 5. GRAPH-BASED MACHINE LEARNING 52

5.1 Robustness of k-nearest neighbors vs. b-matching in high dimen-

sional data

One common application of graph structure estimation is classification, or prediction of labels given

data, where graph edges indicate label equality (or label equality votes). The common approach for

classification of this form is to find the k nearest neighbors of each testing point and transductively

predict the most popular label among its neighbors. Typically, k-nearest neighbors is the only degree

requirement used, while various other options are available, especially in light of our contribution.

The number of neighbors k is generally selected via cross-validation, but other priors may yield bet-

ter performance. In this section, we provide some empirical evidence that the choice of degree prior,

specifically b-matching versus k-nearest neighbors, can strongly influence classification accuracy.

Effects of high-dimensionality Since k-nearest neighbors greedily connects testing points to

their nearest neighbors, undesirable behavior can occur in high dimensional data. Loosely, high-

dimensionality allows more points to consider any given point their nearest neighbor, which means

the label of any training point can affect more testing predictions with higher dimensionality. Fig-

ure 5.1 illustrates this behavior in two-dimensional space.

A generalization bound by Devroye and Wagner [Devroye and Wagner, 1979] provides some

more insight for this behavior.

Theorem 5.1.1 ([Devroye and Wagner, 1979]). Let the Ln denote the true risk (probability of mis-

classification), and let LDn denote the leave-one-out estimate of the risk. Then for n points in d

dimensional space, the deviation between the estimated risk and the true risk is bounded by

Pr(|LDn − Ln| ≥ ε) ≤ 2 exp(−nε2/18) + 6 exp(−nε3/108k(2 + γd)),

where γd is the kissing number, or the number of non-intersecting hyperspheres of equal radius that

can touch a single hypersphere in d dimensions.

The kissing number γd is known to grow exponentially with dimensionality [Conway et al.,

1987], so as dimensionality grows, the amount of data necessary for good generalization also grows

exponentially. In the case of nearest neighbor classification, the kissing number corresponds to the

total number of points that may consider the centroid of the central hypersphere to be their nearest

CHAPTER 5. GRAPH-BASED MACHINE LEARNING 53

−1 0 1
−1

−0.5

0

0.5

1

(a) k-nearest neighbors

−1 0 1
−1

−0.5

0

0.5

1

(b) b-matching

Figure 5.1: Illustration of greedy k-nearest neighbors against b-matching. Points on the outer ring

are closer in Euclidean distance to points on the inner ring than other outer points. Using a target

degree of 2, k-nearest neighbors connect four points to each inner point. Connecting points with

b-matching (b = 2) preserves inner and outer ring membership across neighbors since the inner

points cannot have more than two neighbors each.

neighbor. Thus, the generalization argument stems from the inherent instability of nearest-neighbor

classification as dimensionality grows.

One strategy to counter-act the effects of high-dimensionality in k-nearest neighbor classifica-

tion is to explicitly limit the number of testing points that may consider any given training point

its graph neighbor to a constant b, which can be posed as a minimum distance b-matching. This

limits the effects of any label change, since each training point can only vote on at most b testing

predictions.

Empirical evaluation The DOROTHEA data set [Asuncion and Newman, 2007] is a database

of chemical compounds represented by structural molecular features, which are to be classified as

active (binding to thrombin) or inactive. The training set contains 800 examples and the validation

set contains 350 examples. Each example is described by a tremendous 100,000 features, some of

which were synthetically generated noise 8.

8The data set was used in 2001’s KDD Cup Knowledge Discovery in Data Mining challenge, where the original

competition goal was feature-selection.

CHAPTER 5. GRAPH-BASED MACHINE LEARNING 54

Comparing k-nearest neighbor classification, where each testing point chooses its k neighbors

by Euclidean distance and predicts the most popular label among its neighbors, against a form of

b-matching, where each testing point must have b neighbors, and each training point must have no

more than b neighbors, Figure 5.2 plots for various k and b values the classification accuracy, the

precision, and the recall of positive examples. The figure also contains plots of the degree of the most

popular training node as k and b grow. The difference in the maximum degree is significant, and it

is caused by the high dimensionality of the data. We hypothesize that the b-matching performance

is better because noisy points are limited in how many testing labels they can influence. In other

words, with k-nearest neighbors, a training point may vote on all testing points, while with b-

matching, training points cannot connect to more than b neighbors. Thus, if a training point is an

outlier, its noisy influence using b-matching is more limited.

5.2 Robustness of b-matching against concept drift via translation

The stability of b-matchings also improves classification performance in cases where testing data

has been translated due to concept drift [Huang and Jebara, 2007]. This section describes a synthetic

experiment where concept drift cripples k-nearest neighbors, but b-matching can classify at near-

perfect accuracy. An additional experiment on the more realistic setting of digit classification when

the background of the digit changes between training and testing data, which is similar to translation

in the vector space representation of digit images, shows the translation robustness of b-matching to

a realistic computer vision problem.

Synthetic data We create synthetic data by sampling 50 training data points from two spherical

Gaussians with means at (3, 3) and (−3,−3). We then sample 50 testing data points from similar

Gaussians, but translated along the x-axis by +8. This is a severe case of translation where it is

obvious that k-nearest neighbors will be fooled by the proximity of the testing Gaussian to the

training Gaussian of the wrong class. Figure 5.3 shows the points we sampled from this setup. As

expected, k-nearest neighbors only achieves 65% accuracy on this data for the optimal setting of k,

while b-matching classifies the points perfectly for all settings of b.

CHAPTER 5. GRAPH-BASED MACHINE LEARNING 55

0 10 20 30 40 50 60
0.9

0.95

k

A
c
c
u

ra
c
y

0 10 20 30 40 50 60

0.7

0.8

0.9

k

P
re

c
is

io
n

0 10 20 30 40 50 60
0

0.5

k

R
e

c
a

ll

kNN

b−matching

kNN

b−matching

kNN

b−matching

(a) Accuracy metrics

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

k

D
e
g
re

e
 o

f
m

o
s
t
c
o
n
n
e
c
te

d
 t
ra

in
in

g
 p

o
in

t

kNN

b−matching

(b) Maximum out-degree

Figure 5.2: Results comparing k-nearest neighbors to b-matching for classification on the

DOROTHEA data set. Top: accuracy, precision and recall for varying values of k. The b-matching

prior outperforms k-nearest neighbors on all metrics for nearly all settings of b and k. The precision

for k-nearest neighbors becomes undefined for k greater than 1 because all predicted labels are neg-

ative. Bottom: the maximum number of neighbors of a training point. This plot clearly shows that

k-nearest neighbors is connecting certain training points to tremendous amounts of testing points,

skewing the voting and allowing significant noise if any of these hub points are mislabeled or out-

liers.

CHAPTER 5. GRAPH-BASED MACHINE LEARNING 56

−10 −5 0 5 10 15
−6

−4

−2

0

2

4

6
Synthetic Data

Translated Feature
0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

k

A
c
c
u
ra

c
y

Accuracy

Train +1

Test +1

Train −1

Test −1

b−matching

k−nearest−neighbor

Figure 5.3: Left: Synthetic classification data where the test data is translated to the right along the

x-axis. Right: Accuracy for k-nearest neighbor versus b-matching for various k (or b).

Digit backgrounds For a more realistic example of this phenomenon, we sample the MNIST

digits dataset of 28 × 28 grayscale digits. For each of the similar-looking digits 3, 5, and 8, we

sample 100 training points from the training set and 100 from the testing set. We average accuracy

over 20 random samplings to avoid anomalous results. We cross-validate over settings of b and k in

the range [1, 300] and save the best accuracy achieved for each algorithm on each sampling.

We examine the case where training and testing data are collected under drastically different

conditions by simulating that the testing digits are printed against various backgrounds. We replace

all white (background) pixels in the testing images with these backgrounds and attempt classification

using both algorithms on these new datasets. Figure 5.4 contains examples of digits placed in front

of backgrounds.

The results show that b-matching outperforms k-nearest neighbors, sometimes by significant

margins. On the unaltered white background and the diagonal lines, both algorithms classify at

slightly higher than 90% accuracy. On the grid, white noise, brushed metal, wood and marble

backgrounds, b-matching is invariant to the transformation while k-nearest neighbors suffers drops

in accuracy. Figure 5.4 contains a plot of both algorithms’ average accuracies for each background

type.

Since the background replacement is like a translation of the image vectors that preserves the

general shape of the distribution, b-matching is a more useful tool for connecting training examples

CHAPTER 5. GRAPH-BASED MACHINE LEARNING 57

to testing points than k-nearest neighbors.

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Background texture

A
v
e

ra
g

e
 a

c
c
u

ra
c
y BM

KNN

100 200 300
0

0.2

0.4

0.6

0.8

1

k

A
v
e

ra
g

e
 a

c
c
u

ra
c
y BM

KNN

1

2

3

4

5

6

7

Figure 5.4: (Left) Examples of digits placed on backgrounds: 1-unaltered, 2-diagonal lines, 3-grid,

4-white noise, 5-brushed metal, 6-wood, 7-marble. (Top right) Average accuracies over 20 random

samplings for optimal setting of b or k. (Bottom right) Average accuracy on wood background for

various settings of b or k.

5.3 Graph construction for semi-supervised learning

This section reproduces a subset of experiments by Jebara et al. comparing b-matching to k-nearest

neighbors in the task of graph-based semi-supervised learning [Jebara et al., 2009]. In semi-

supervised learning, a prediction algorithm is given labeled training data, unlabeled background

data, and unlabeled query data to be labeled by the predictor. Various approaches to solve this

problem construct a graph, connecting all points — labeled, unlabeled, and query points — based

on similarity, and perform some form of label propagation. Analogous to voting in supervised

CHAPTER 5. GRAPH-BASED MACHINE LEARNING 58

k-nearest neighbor classification, label propagation algorithms transfer information from labeled

points to all unlabeled points, where in the semi-supervised setting, the unlabeled background points

are not tested, but instead help characterize the space of all points.

As in the original experiments, we use the USPS digit data set, which contains images of sin-

gle digits labeled 0 through 9. Sampling a random subset of 2000 digits, we randomly select a

single labeled instance per class. We use either k-nearest neighbors or approximate non-bipartite

b-matching via belief propagation to construct a minimum Euclidean distance graph between digits,

with k = b = 7. After constructing the graph, we weight each edge according to a Gaussian kernel

re-weighting, in which the edge weight between feature vectors xi and xj is

Wij = exp

(
d(xi,xj)

2σ2

)
,

where in these experiments we choose σ to be d̄k/3, where d̄k is the average distance between each

point and its k’th nearest neighbor [Jebara et al., 2009].

Given the constructed graph, three label propagation methods are compared: Gaussian random

fields (GRF) [Zhu et al., 2003], local and global consistency (LGC) [Zhou et al., 2004], and graph

transduction via alternating minimization (GTAM) [Wang et al., 2008]. The average error rates

for each label propagation method and each graph construction method over 20 random splits are

listed in Table 5.1, where b-matching produces a lower error rate than k-nearest neighbors for all

algorithms. Similar results on more thorough experiments are presented by Jebara et al. [Jebara et

al., 2009].

GRF LGC GTAM

k-nearest neighbors 0.175550 0.146625 0.126000

b-matching 0.167625 0.132925 0.115575

Table 5.1: Error rates of USPS semi-supervised classification.

5.4 Summary of graph-based classification

This section provides evidence that b-matching is a useful graph-construction option for graph-

based learning. The benefits of b-matching are demonstrated for classification problems in high-

CHAPTER 5. GRAPH-BASED MACHINE LEARNING 59

dimensionality, when concept-drift causes training and testing data to differ, and in the semi-

supervised setting.

CHAPTER 6. COLLABORATIVE FILTERING 60

Chapter 6

Collaborative Filtering

At the time of this thesis work, in 2011, the Internet is booming with countless sources of in-

formation, constantly producing more content as well as more tools for the acquisition or deliv-

ery of old and new content to users. Growth in these areas has caused a severe need for filter-

ing of the available content to avoid overwhelming users. Collaborative filtering is the general

problem of filtering content using user interaction data. The collaborative filtering problem has

been gradually formalized in recent years. The Netflix Grand Challenge [Bell and Koren, 2007;

Koren et al., 2009] widely publicized the problem to mainstream media as well as research commu-

nities around machine learning.

The collaborative filtering task typically concerns the prediction of ratings of users for items,

using information such as past ratings by the users for other items or by other users for the queried

items, or features of the users and items in question. For example, on the Netflix service, users

rate movies, television shows, and videos, and part of the Netflix experience is recommendations of

movies for users to watch next.

This chapter addresses the collaborative filtering problem as a relational learning problem. Mea-

sured interactions between users and items can be viewed as edges or relations, and the goal of pre-

dicting relations between unseen user-item pairs is posed as a graph estimation. Initially, Section 6.2

handles a simplified form of the collaborative filtering problem in which user interactions are mea-

sured as binary, positive or negative, ratings. Section 6.3 extends the ideas from 6.2 to the more

general, multi-relational setting, in which multi-valued ratings are modeled as different relations

between users and items, in a framework which also allows continuous-valued relations.

CHAPTER 6. COLLABORATIVE FILTERING 61

6.1 Prior approaches for collaborative filtering

Early approaches for collaborative filtering involved natural ideas such as clustering [Breese et

al., 1998; Ungar and Foster, 1998] and simple graphical models [Hofmann and Puzicha, 1999;

Marlin, 2004]. More recently, a popular approach is to model the observable ratings by users

for items as entries in a partially-observed rating matrix. The idea for predicting the remaining,

unobserved entries in the matrix is to assume that the rating matrix is a matrix product of latent

user and item factor matrices. The basic learning algorithm is then to factorize the rating ma-

trix into these factors, using variants of singular value decomposition (SVD). To regularize the

predictions of these methods, the factor matrices are assumed to be low-dimensional, thus lim-

iting the complexity of the learned model. Various important empirical and theoretical results

not discussed in this thesis have resulted from variations of this basic idea[Bell and Koren, 2007;

Breese et al., 1998; Koren et al., 2009; Lim and Teh, 2007; Montanari et al., 2009; Rennie and Sre-

bro, 2005; Salakhutdinov and Mnih, 2008b; Salakhutdinov and Mnih, 2008a; Srebro et al., 2004;

Weimer et al., 2007].

6.2 Collaborative filtering as graph estimation

We apply degree-based subgraph estimation as a post-processing step in a graph prediction problem.

Consider the task of predicting a graph defined by the recommendations of items by users in a

variation of the standard collaborative filtering setting. We define a recommendation graph as a

bipartite graph between a set of users U = {u1, . . . , um} and a set of items V = {v1, . . . , vn}
that the users have rated with binary recommendations. We assume a sparse rating matrix X =

{0, 1}m×n representing the recommendations of items by users such that entry Xij is 1 if the i’th

user recommends the j’th item and is otherwise 0. The rating matrix X is equivalent to the adjacency

matrix of the recommendation graph. The training data is a set T of user-item pairs and whether an

edge is present between their nodes in the recommendation graph. The testing data is another set Q

of queried user-item pairs, and the task is to predict which of the testing pairs will have a preference

edge present.

First, we provide motivation for using degree priors in post-processing. The degrees of nodes

in the predicted graph represent the number of items liked by a user or the number of users that

CHAPTER 6. COLLABORATIVE FILTERING 62

like an item. Under certain assumptions, the rate of liking or being liked will concentrate around its

empirical estimate, and the deviation probability between training and testing rates is bounded by

a log-concave upper bound. Therefore, we can use the deviation bound as a degree prior to post-

process predictions output by a state-of-the-art inference method. This, in effect, forces predictions

to obey the bounds.

6.2.1 Concentration bound

We assume that users U and items V are drawn iid from arbitrary population distributions Du and

Dv. We also assume that the probability of an edge between any nodes ui and vj is determined by a

function that maps the features of the nodes to a valid Bernoulli probability

Pr(Xij = 1|ui, vj) = g(ui, vj) ∈ [0, 1]. (6.1)

These assumptions yield a natural dependency structure for rating probabilities. The joint probabil-

ity of users, items and ratings is defined as follows:

Pr(X, U, V |Du,Dv) ∝
∏

ij

Pr(Xij |ui, vj)
∏

i

Pr(ui|Du)
∏

j

Pr(vj |Dv). (6.2)

The structure of this generative model implies dependencies between the unobserved ratings and

even dependencies between the users and items. This is because the query rating variables and all

user and item variables are latent. Due to the independent sampling procedure on users and items,

this is known as a hierarchical model [Gelman et al., 2003] and induces a coupling, or interde-

pendence, among the test predictions that are to be estimated by the algorithm. Since the rating

variables exist in a lattice of common parents, this dependency structure and the hierarchical model

are difficult to handle in a Bayesian setting unless strong parametric assumptions are imposed. In-

stead, we next derive a bound that captures the interdependence of the structured output variables

X without parametric assumptions.

We assume that both the training and testing user-item sets are completely randomly revealed

from a set of volunteered ratings, which allows proof of an upper bound for the probability that the

empirical edge rate of a particular node deviates between training and testing data. In other words,

we estimate the probability that an empirical row or column average in the adjacency matrix deviates

from its true mean. Let Xi = {Xij |ij ∈ T ∪Q} represent the row of training and query ratings by

CHAPTER 6. COLLABORATIVE FILTERING 63

user i. Let function ∆(Xi) represent the difference between the training and query averages,

∆(Xi) =
1

mi

∑

j|ij∈T
Xij −

1

m̂i

∑

j|ij∈Q
Xij ,

which is bounded by the following theorem.

Theorem 6.2.1. Given that users U = {u1, . . . , um} and rated items V = {v1, . . . , vn} are drawn

iid from arbitrary distributions Du and Dv and that the probability of positive rating by a user for

an item is determined by a function g(ui, vj) 7→ [0, 1], the average of query ratings by each user is

concentrated around the average of his or her training ratings. Formally,

Pr (∆(Xi) ≥ ε) ≤ 2 exp

(
− ε2mim̂i

2(mi + m̂i)

)
, (6.3)

Pr (∆(Xi) ≤ −ε) ≤ 2 exp

(
− ε2mim̂i

2(mi + m̂i)

)
.

The proof of Theorem 6.2.1 is available in appendix Section B.3, as well as the equivalent

corollary bounding the deviation of ratings per item.

Many collaborative filtering learning algorithms applied in this binary setting estimate the edge

likelihoods. However, independently predicting the most likely setting of each edge is equivalent

to using a uniform prior over the rating averages. A uniform prior violates the bound at a large

enough deviation from the training averages. Specifically, this occurs for users or items with a large

number of training and testing examples. Thus, it may be advantageous to use a prior that obeys

the bound. Since the bound decays quadratically in the exponent, priors that will never violate the

bound must decay at a faster rate. These exclude uniform and Laplace distributions and include

Gaussian, sub-Gaussian and delta distributions. We propose simply using the normalized bound as

a prior.

6.2.2 Edge weights

To learn reasonable values for the independent edge weights, we use fast max-margin matrix fac-

torization (fMMMF) [Rennie and Srebro, 2005] using a logistic loss function, which has a natural

probabilistic interpretation [Rennie, 2007]. In the binary-ratings setting, the gradient optimization

for logistic fMMMF, which uses a logistic loss as a differentiable approximation of hinge-loss, can

be interpreted as maximizing the conditional likelihood of a generative model that is very similar to

CHAPTER 6. COLLABORATIVE FILTERING 64

one discussed above. The objective is9

min
U,V

J(U,V) =
1

2
(||U||2Fro + ||V||2Fro) + C

∑

ij

log
(

1 + e−X
±
ij (u>i vj−θi)

)
.

The probability function for positive ratings is the logistic function,

Pr(Xij |ui,vj , θi) = g(ui,vj) =
1

1 + e−(u>i vj−θi)
,

which yields the exact loss term above. Minimization of squared Frobenius norm corresponds to

placing zero-mean, spherical Gaussian priors on the ui and vj vectors, Pr(ui) ∝ exp(− 1
C ||ui||2)

and Pr(vj) ∝ exp(− 1
C ||vj ||2). This yields the interpretation of fMMMF as MAP estimation

[Rennie, 2007]:

max
U,V,Θ

∏

ij

P (Xij |ui,vj , θi)
∏

i

Pr(ui)
∏

j

Pr(vj).

From the estimated U and V matrices from fMMMF, we use the logistic probabilities to set the

singleton functions over edges (i.e., edge weights). Specifically, the weight of an edge is the change

in log-likelihood caused by switching the edge from inactive to active, Wij = u>i vj − θi.

6.2.3 Results

These experiments test five data sets. Four are standard collaborative filtering datasets, thresholded

at reasonable levels. The last is trust/distrust data gathered from Epinions.com which represents

whether users trust other users’ opinions. The EachMovie data set contains 2,811,983 integer rat-

ings by 72,916 users for 1,628 movies ranging from 1 to 6, which we threshold at 4 or greater to

represent a positive rating. The portion of the Jester data set [Goldberg et al., 2001] we used con-

tains 1,810,455 ratings by 24,983 users for 100 jokes ranging from -10 to 10, which we threshold at

0 or greater. The MovieLens-Million data set contains 1,000,209 integer ratings by 6,040 users for

3,952 movies ranging from 1 to 5, which we threshold at 4 or greater. The Book Crossing data set

[Ziegler et al., 2005] contains 433,669 explicit integer ratings10 by 77,805 users for 185,854 books

9Here X±ij represents the signed {−1,+1} representation of the binary rating, whereas previously, we use the {0, 1}

representation. Additionally, the matrix factorization notation treats U and V as matrices where the rows are vector

descriptors of users and items.

10The Book Crossing data set contains many more “implicit” recommendations, which occur when users purchase

books but do not explicitly rate them. Presumably, these indicate positive opinions of the books; however, it is unclear

what defines a negative implicit rating, so we only experiment on the explicit ratings.

CHAPTER 6. COLLABORATIVE FILTERING 65

ranging from 1 to 10, which we threshold at 7 or greater. Lastly, the Epinions data set [Massa and

Avesani, 2005] contains 841,372 trust/distrust ratings by 84,601 users for 95,318 authors.

Each data set is split randomly three times into half training and half testing ratings. We ran-

domly set aside 1/5 of the training set for validation, and train logistic fMMMF on the remainder

using a range of regularization parameters. The output of fMMMF serves as both the baseline as

well as the weight matrix of our algorithm. We set the degree prior for each row/column to be pro-

portional to the deviation bound from Theorem 6.2.1. Specifically, we use the following formula to

set the degree potential ψi for the i’th user:

ψuser
i (k) = −λ

(
1
mi

∑
j|ij∈T Xij − k/m̂i

)2
mim̂i

2(mi + m̂i)
. (6.4)

The appropriate substitutions form the equivalent formula for the degree potentials of the j’th item.

We introduce a regularization parameter λ that scales the potentials. When λ is zero, the degree

prior becomes uniform and the MAP solution is to threshold the weight matrix at 0 (the default

fMMMF predictions). At greater values, we move from a uniform degree prior (default rounding)

toward strict b-matching, following the shape of the concentration bound at intermediary settings.

We explore increasing values of λ starting at 0 until either the priors are too strong and overfit

or until the value of λ is so great that we are solving a simple b-matching with degrees locked to

an integer value instead of a distribution of integers. Increasing λ thereafter will not change the

result. We validate at this stage by including the testing and held-out validation ratings in the query

set of ratings, and consider the regularization parameter that produces the best performance on the

validation set. The post-processing procedure is described in Algorithm 4.

The running time of the post-processing procedure is short compared to the time spent learning

edge weights via fMMMF. This is due to the fast belief propagation matching code and the sparsity

of the graphs. Each graph estimation takes a few minutes (no more than five), while the gradient

fMMMF takes hours on these large-scale data sets.

We compare the zero-one error of prediction on the data. In particular, the key comparison is

between the fMMMF output that performed best on cross-validation data and the MAP solution of

the same output with additional degree priors. The results indicate that adding degree priors reduces

testing error on all splits of five data sets. The error rates are represented graphically in Fig. 6.1

and numerically in Table 6.1. With higher λ values, the priors pull the prediction averages closer to

CHAPTER 6. COLLABORATIVE FILTERING 66

Algorithm 4 Post-processing procedure for collaborative filtering using degree concentration.
Require: Partially observed rating matrix X, training index-pairs T , query index-pairs Q, regu-

larization parameter λ, collaborative filtering algorithm CF, degree-based subgraph estimator

DBSE

1: P← CF(X, T)

2: Wij ← log
Pij

1−Pij
∀(i, j) ∈ Q

3: ψuser
i (k)← −λ

(
1
mi

∑
j|ij∈T Xij − k/m̂i

)2
mim̂i/ (2(mi + m̂i)) , ∀i, k

4: ψitem
j (k)← −λ

(
1
nj

∑
i|ij∈T Xij − k/n̂j

)2
njn̂j/ (2(nj + n̂j)) , ∀j, k

5: Ê ← DBSE(W, Q, ψ)

6: Xij ← I((i, j) ∈ Ê), ∀(i, j) ∈ Q
7: return X

the training averages, which causes overfitting on all but the Epinions data set. Interestingly, even

b-matching the Epinions data set improves the prediction accuracy over fMMMF. This suggests

that the way users decide whether they trust other users is determined by a process that is strongly

concentrated. These experiments provide evidence that enforcing degree distribution properties

on the estimated graph consistently improves the performance of a state-of-the-art factorization

approach.

Data set fMMMF Degree

EachMovie 0.3150 ± 0.0002 0.2976 ± 0.0001

Jester 0.2769 ± 0.0008 0.2744 ± 0.0021

MovieLens 0.2813 ± 0.0004 0.2770 ± 0.0005

BookCrossing 0.2704 ± 0.0016 0.2697 ± 0.0016

Epinions 0.1117 ± 0.0005 0.0932 ± 0.0003

Table 6.1: Average zero-one error rates and standard deviations of best MAP with degree priors and

fMMMF chosen via cross-validation. Average taken over three random splits of the data sets into

testing and training data. Degree priors improve accuracy on all data sets, but statistically significant

improvements according to a two-sample t-test with a rejection level of 0.01 are bold.

CHAPTER 6. COLLABORATIVE FILTERING 67

0 50

0.36

0.365

0.37

EachMovie

S
p
lit

 1

0 5 10

0.272
0.274
0.276
0.278

Jester

0 5 10
0.275

0.28

MovieLens

0 1 2 3

0.2685
0.269

0.2695
0.27

0.2705

BookCrossing

0 50 100

0.095
0.1

0.105
0.11

Epinions

0 50

0.36

0.365

0.37

Z
e
ro

−
O

n
e
 E

rr
o
r

S
p
lit

 2

0 5 10

0.272
0.274
0.276
0.278

0 5 10
0.276
0.278

0.28
0.282

0 1 2 3

0.2715
0.272

0.2725
0.273

0 50 100

0.095
0.1

0.105
0.11

0 50

0.36

0.365

0.37

S
p
lit

 3

0 5 10
0.275

0.28

0 5 10
0.275

0.28

Regularization Parameter λ
0 1 2 3

0.2685

0.269

0.2695

0 50 100

0.095
0.1

0.105
0.11

Figure 6.1: Collaborative filtering testing errors of MAP solution across different data sets and

random splits. The horizontal axis of each plot represents the scaling parameter λ and the vertical

axis represents the error rate. The solid blue line is the MAP solution with degree priors, and

the dotted black line is the logistic-fMMMF baseline. The red circle marks the setting of λ that

performed best on the cross-validation set. See Table 6.1 for the numerical scores.

CHAPTER 6. COLLABORATIVE FILTERING 68

6.3 Collaborative filtering via rating concentration

This section extends the ideas from the previous section to the more general collaborative filtering

problem by again exploiting the concentration of user and item statistics. The statistics in this

section may be relations between users and items, but the terminology in this section treats them

as arbitrary functions, since the mathematical framework developed here allows modeling of any

continuous bounded function, rather than the discrete, or binary relations typically used in relational

learning.

By making a relatively agnostic assumption that users and items are drawn independently and

identically-distributed (iid), it can be shown that the statistics of training ratings must concentrate

close to the expectations of corresponding query ratings. Such assumptions are weaker than those

used in previous approaches which often assume a parametric form on the generative model or

assume that the rating matrix is low-rank. Nevertheless, an otherwise indifferent probability esti-

mate that obeys such bounds (for instance the maximum entropy estimate) provides state-of-the-art

performance [Huang and Jebara, 2010].

The method described here is largely complementary with current approaches since these lever-

age different intuitions, such as specific parametric forms for the distributions involved and low-rank

constraints on the rating matrix. For instance, the assumption that the ratings matrix is low rank un-

derlies many singular value decomposition (SVD) techniques. Therein, users and items are assumed

to be iid, and ratings are assumed to be randomly revealed such that there is no bias between training

and testing statistics. These assumptions have been shown to be unrealistic [Marlin et al., 2007],

however empirical performance remains promising. The SVD approach further assumes that the rat-

ings are sampled from distributions parametrized by the inner products of low-dimensional descrip-

tor vectors for each user and each item. In other words, the full rating matrix is assumed to be the

product of a user population matrix and an item population matrix, possibly with additional indepen-

dent noise. Often, such matrices are estimated with some form of regularization, either by truncating

their rank, by penalizing their Frobenius norm or by placing Gaussian priors (a parametric assump-

tion) on their descriptor vectors [Breese et al., 1998; Lim and Teh, 2007; Montanari et al., 2009;

Rennie and Srebro, 2005; Salakhutdinov and Mnih, 2008a; Salakhutdinov and Mnih, 2008b;

Srebro et al., 2004; Weimer et al., 2007].

Conversely, the approach in this section only makes minimal hierarchical sampling assump-

CHAPTER 6. COLLABORATIVE FILTERING 69

tions. It assumes that users and items are sampled iid and that each rating is subsequently sampled

independently from a conditional probability distribution that depends on the respective user-item

pair in an arbitrary manner. It is also assumed that the ratings are revealed randomly. The resulting

learning algorithm makes no further assumptions about the distributions or the interaction between

items and users (such as the inner product assumption most low-rank matrix-factorization methods

make). Subsequently, we prove that, as long as each rating distribution depends only on the user

and item involved, statistics from a user’s (or item’s) training data concentrate around the expected

averages of the query probabilities. The result is a concentration inequality which holds regardless

of modeling assumptions. The combination of these concentration inequalities defines a convex

hull of allowable distributions. With high probability, the desired solution lives within this set but is

otherwise underdetermined. A reasonable way to select a particular member of this set is to identify

the one that achieves maximum entropy (or minimum relative entropy to a prior). The maximum

entropy criterion is merely used as an agnostic regularizer to handle the underdetermined estimation

problem and ensure the uniqueness of the recovered estimate within the convex hull.

Since the dependencies in the rating process exhibit a hierarchical structure, the method pro-

posed is reminiscent of the hierarchical maximum entropy framework [Dudı́k et al., 2007]. In fact,

the proposed algorithm can be viewed as a specific application of hierarchical maximum entropy

where we estimate distributions linked by common parents (from which we have no samples) using

statistics gathered from separate distributions with one sample each. Thus, the collaborative filtering

setting is an extreme case of the hierarchical maximum entropy setup since, without the hierarchy,

there would be no information about certain components of the probability model. Moreover, pre-

vious work [Dudı́k et al., 2007] proposed tree-structured hierarchies while this article explores a

grid-structured (non-tree) hierarchy due to the matrix setup of users and items in the collaborative

filtering problem.

The proposed intuitions and concentration inequalities of this section complement previous

parametric approaches and provide additional structure to the collaborative filtering problem. They

may be used in conjunction with other assumptions such as low-rank matrix constraints. Similarly,

the concentration bounds hold whether the data is generated by a distribution with known parametric

form or by any arbitrary distribution.

CHAPTER 6. COLLABORATIVE FILTERING 70

6.3.1 Algorithm description

Consider the collaborative filtering problem where the input is a partially observed rating matrix

X ∈ ZM×N . Each matrix element Xij ∈ {1, . . . ,K} is a random variable representing the rating

provided by the i’th user for the j’th item where i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. The users

{u1, . . . , um} and the items {v1, . . . , vn} are variables drawn iid from arbitrary sample spaces ui ∈
Ωu and vj ∈ Ωv, respectively. The observed ratings (where a sample of the random variable is

provided) will be treated as a training set for the collaborative filtering problem and used to estimate

unobserved ratings (where no sample of the random variable is available). The desired output is

a set of predicted probability distributions on certain query ratings whose indices are specified a

priori. Let T be the set of observed training (i, j) indices and let Q be the set of query indices.

Given {Xij |(i, j) ∈ T} and Q, the goal is to estimate the probabilities {p(Xij |ui, vj)|(i, j) ∈ Q}.
CHAPTER 6. COLLABORATIVE FILTERING 49

. . .

...
...

x11

x12

x1m

x21

x22

x2m

xn1

xn2

xnm

...
...

...

. . .

. . .

. . .

. . .

Du

Dv

u1 u2 un

v1

v2

vm

Figure 6.2: Graphical model of sampling assumptions. We solve for the probabilities of the query

ratings without explicitly estimating the user and item descriptors.

6.2.1 Algorithm description

Consider the collaborative filtering problem where the input is a partially observed rating matrix

X ∈ ZM×N . Each matrix element xij ∈ {1, . . . ,K} is a random variable representing the rating

provided by the i’th user for the j’th item where i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}. The users
{u1, . . . , uM} and the items {v1, . . . , vN} are variables drawn iid from arbitrary sample spaces

ui ∈ Ωu and vj ∈ Ωv, respectively. The observed ratings (where a sample of the random variable is

provided) will be treated as a training set for the collaborative filtering problem and used to estimate

unobserved ratings (where no sample of the random variable is available). The desired output is

a set of predicted probability distributions on certain query ratings whose indices are specified a

priori. Let T be the set of observed training (i, j) indices and let Q be the set of query indices.

Given {xij |(i, j) ∈ T} and Q, we wish to estimate the probabilities {p(xij |ui, vj)|(i, j) ∈ Q}.

Figure 6.2: Graphical model of sampling assumptions. We solve for the probabilities of the query

ratings without explicitly estimating the user and item descriptors.

CHAPTER 6. COLLABORATIVE FILTERING 71

Sampling assumptions A major challenge in the sampling setting of collaborative filtering is that

only a single sample rating11 is observed from the training distributions {p(Xij |ui, vj)|(i, j) ∈ T}
and zero samples are observed from the query distributions {p(Xij |ui, vj)|(i, j) ∈ Q}. To transfer

information from training samples to the query distributions, it will be helpful to make a hierarchical

sampling assumption. Figure 6.2 depicts a graphical model representation of the proposed structure

that will be used. First, users are drawn iid from an unknown distribution p(u) and items are drawn

iid from another unknown distribution p(v). Subsequently, for some pairs of users and items, a

rating is drawn independently with dependence on the corresponding item and user samples (the

rating’s parents in the graphical model).

It is natural to require that the ratings are samples from multinomial distributions over a range

of rating values. In most collaborative filtering data sets (e.g., the Movielens data sets), ratings

are discrete integer values (e.g., 1 to 5), so the multinomial is non-restrictive. We further assume

that the multinomial distributions are conditioned on a latent user descriptor variable ui ∈ Ωu

and a latent item descriptor variable vj ∈ Ωv for each query Xij ∈ {1, . . . ,K}. In other words,

we assume rating samples are drawn from p(Xij |ui, vj) = g(Xij , ui, vj), where g provides an

arbitrary mapping of the user and item descriptor variables to a valid multinomial distribution in

the probability simplex. This is in contrast to standard (SVD) assumptions, which require that the

function is constrained to be g(Xij , u
>
i vj), where the function g may be constrained parametrically

and must depend solely on the inner product of low-dimensional vector descriptors in a Euclidean

space.

Ratings Xij for different users and items in this formulation are not identically distributed,

not even for any particular user or item. The distribution p(Xij |ui, vj) for user i for an item j

can be dramatically different from p(Xik|ui, vk), user i’s rating distribution for another item k 6=
j. However, the sampling structure in Figure 6.2 allows the transfer of information across many

distributions since users (and items) are sampled iid from a common distribution p(u) (and p(v)).

The joint probability distribution implied by the figure factorizes as
∏
ij p(Xij |ui, vj)p(ui)p(vj)

and, in particular, we are interested in recovering
∏

(i,j)∈Q p(Xij |ui, vj).

The aforementioned sampling assumptions will establish that the empirical average of any func-

tion of the ratings generated by a single user (or item) is close to its expectation with high probabil-

11Recommendation data sets may include multiple ratings per user-item pair, though these are rare in practice.

CHAPTER 6. COLLABORATIVE FILTERING 72

ity. More specifically, empirical averages over training samples are close to corresponding averages

over the expected values of the query distributions.

Concentration bound In this section, we present a theorem proving the concentration of training

statistics to expected query averages. Specifically, we consider bounded scalar functions fk(X) 7→
[0, 1] that take ratings as input and output a value inclusively between 0 and 1.12 Examples of such

functions include the normalized rating itself (e.g., (x − 1)/(K − 1), for ratings from 1 to K), or

indicator functions for each possible value (e.g., I(x = 1)).

We will consider bounding the difference of two quantities. The first quantity is the empirical

average of function fk(X) over the training ratings. Since this quantity is fixed throughout learning,

we simplify notation by using µik to denote this average of function fk(X) for user i’s ratings, and

using νjk to denote the average for item j’s ratings. Let mi be the number of training ratings for

user i and let nj be the number of training ratings for item j. These averages are then

µik =
1

mi

∑

j|(i,j)∈T
fk(Xij), νjk =

1

nj

∑

i|(i,j)∈T
fk(Xij). (6.5)

The second quantity of interest is the expected average of fk(X) evaluated on the query ratings. Let

m̂i be the number of query ratings for user i and n̂j be the number of query ratings for item j. The

expected averages are then expressed as

1

m̂i

∑

j|(i,j)∈Q
Ep(Xij |ui,vj)[fk(Xij)],

1

n̂j

∑

i|(i,j)∈Q
Ep(Xij |ui,vj)[fk(Xij)]. (6.6)

The following theorem bounds the differences between the quantities in Equation (6.5) and Equation

(6.6).

Theorem 6.3.1. For the ratings of user i, the difference

εik =
1

mi

∑

j|(i,j)∈T
fk(Xij)−

1

m̂i

∑

j|(i,j)∈Q
Ep(Xij |ui,vj)[fk(Xij)] (6.7)

12These functions may also be measured relationships between the users and items, in which case the required assump-

tion is that the latent relationship between any user and item deterministically determines the measurable multi-relations

between them.

CHAPTER 6. COLLABORATIVE FILTERING 73

between the average of fk(X) 7→ [0, 1] over the observed ratings and the average of the expected

value of fk(X) over the query ratings is bounded above by

εik ≤
√

ln 2
δ

2mi
+

√
(mi + m̂i) ln 2

δ

2mim̂i
(6.8)

with probability 1− δ.

The proof is deferred to Appendix B.4. The same difference is also bounded by the following

corollary.

Corollary 6.3.2. The difference εik defined in Equation (6.7) is bounded below by

εik ≥ −
√

ln 2
δ

2mi
−
√

(mi + m̂i) ln 2
δ

2mim̂i
(6.9)

with probability 1− δ.

Since Theorem 6.3.1 holds for any bounded function, applying the result for function 1−fk(X)

proves the corollary. Moreover, the same bounds hold for item ratings as summarized by the fol-

lowing corollary.

Corollary 6.3.3. For the ratings of item j, the difference between the average of fk(X) 7→ [0, 1]

over the observed ratings and the average of the expected value of fk(X) over the query ratings is

bounded above and below with high probability.

The proof follows by replacing all references to users with references to items and vice versa.

This produces concentration bounds that are similar to those in Equations (6.8) and (6.9).

Not only does Theorem 6.3.1 provide assurance that we should predict distributions with sim-

ilar averages across training and query entries of X , the dependence of the bounds on the number

of training and query samples adaptively determine how much deviation can be allowed between

these averages. Due to the linearity of the expectation operator, each bound above produces a linear

inequality or half-space constraint on p(Xij |ui, vj). The conjunction of all such half-spaces13 forms

a convex hull ∆ of allowable choices for the distribution
∏

(i,j)∈Q p(Xij |ui, vj). These bounds hold

13Combining the bounds for each user, item, and feature requires using a significantly looser union bound, which

maintains the motivation for the learning algorithm, but is no longer likely to hold in finite data of realistic cardinality.

CHAPTER 6. COLLABORATIVE FILTERING 74

without parametric assumptions about the conditional probabilities p(Xij |ui, vj) generating the rat-

ings. They also make no parametric assumptions about the distributions p(u) and p(v) generating

the users and the items. The δ confidence value adjusts all the deviation inequalities and can be used

as a regularization parameter. A small value of δ effectively relaxes the convex hull of inequalities

while a large value of δ permits less deviation and shrinks the hull. Thus, δ controls all deviation

inequalities which also individually depend on the cardinality of their training and query ratings.

The maximum entropy method for estimating rating probabilities All probability distributions

must be members of the simplex, denoted ∆. To choose from the candidate distributions p ∈ ∆

that fit the constraints derived in the previous section (and reside inside the prescribed convex hull),

we apply the maximum entropy method. The solution distribution p recovered will be of the form
∏

(i,j)∈Q p(Xij |ui, vj). We choose the distribution that contains the least information subject to the

deviation constraints from the training data. Alternatively, we can minimize relative entropy to a

prior p0 subject to the constraints defined by the deviation bounds. This is a strictly more general

approach since, when p0 is uniform, minimum relative entropy coincides with standard maximum

entropy. We suggest using a single identical maximum likelihood multinomial distribution over all

ratings independent of user and item for the prior, namely
∏

(i,j)∈Q p0(Xij). Hence, we use the

terms maximum entropy and minimum relative entropy interchangeably.

Assume we are given a set of functions F where fk ∈ F and k ∈ {1, . . . , |F |}. Let αi be

the maximum deviation allowed for each function’s average expected value for i. Let βj be the

maximum deviation allowed for each function’s average expected value for item j. The α and β

ranges are set according to Theorem 6.3.1 and its corollaries. For some δ, the allowed deviations

are

αi =

√
ln 2

δ

2mi
+

√
(mi + m̂i) ln 2

δ

2mim̂i

βj =

√
ln 2

δ

2nj
+

√
(nj + n̂j) ln 2

δ

2njn̂j
.

These scalars summarize the convex hull ∆ of distributions that are structured according to the

prescribed sampling hierarchy.

CHAPTER 6. COLLABORATIVE FILTERING 75

The primal maximum entropy problem is

max
p

∑

ij∈Q
H(pij(Xij)) +

∑

ij∈Q,Xij

pij(Xij) ln p0(Xij)

s.t.

∣∣∣∣∣∣
1

m̂i

∑

j|ij∈Q

∑

Xij

pij(Xij)fk(Xij)− µik

∣∣∣∣∣∣
≤ αi, ∀i, k

∣∣∣∣∣∣
1

n̂j

∑

i|ij∈Q

∑

Xij

pij(Xij)fk(Xij)− νjk

∣∣∣∣∣∣
≤ βj , ∀j, k.

In the above equation, pij(Xij) is used as shorthand for the conditional probabilities p(Xij |ui, vj)
for space reasons. In practice, the dual form of the problem is solved. This is advantageous be-

cause the number of queries is typically O(mn), for m users and n items, whereas the number

of constraints is O(m + n). Moreover, only a sparse set of the constraints is typically active.

Since the primal problem is more intuitive, the details of the dual formulation are deferred to Ap-

pendix C.1. Given a choice of the feature functions F , a setting of δ and a set of observations, it is

now straightforward to solve the above maximum entropy problem and obtain a solution distribution
∏

(i,j)∈Q p(Xij |ui, vj).

Feature functions This subsection specifies some possible choices for the set of feature functions

F . These are provided only for illustrative purposes since many other choices are possible as long

as the functions have [0, 1] range. For discrete ratings {1, . . . ,K}, a plausible choice of F is the

set of all possible conjunctions over the K settings. For example, the set of all singleton indicator

functions and the set of pairwise conjunctions encodes a reasonable set of features whenK is small:

fi(x) = I(x = i), i ∈ {1, . . . ,K},
fi,j(x) = I(x = i ∨ x = j), (i, j) ∈ {1, . . . ,K}2.

These are used to populate the set F as well as the linear and quadratic transformation functions

f(x) = (x − 1)/(K − 1) and f(x) = (x − 1)2/(K − 1)2. Each of these functions is bounded

by [0, 1]. It is thus possible to directly apply Theorem 6.3.1 and produce the constraints for the

maximum entropy problem.

While previous `1-regularized maxent methods have combined the positive and negative abso-

lute value Lagrange multipliers [Dudı́k et al., 2007], we found that on our data, this led to numerical

issues during optimization. Instead, we optimize both the positive and negative multipliers even

CHAPTER 6. COLLABORATIVE FILTERING 76

though only one will be active at the solution. To reduce computation time, we use a simple cutting

plane procedure. We initialize the problem at the prior distribution where all Lagrange multipliers

are set to zero and find the worst violated constraints. We solve the dual (Appendix C.1), fixing all

Lagrange multipliers at zero except the most violated constraints, and continue increasing the con-

straint set until all primal constraints are satisfied. In the worst case, this method eventually must

solve a problem with half of the Lagrange multipliers active. Typically, we only need to optimize a

much smaller subset. We solve the optimizations using the LBFGS-b optimizer [Zhu et al., 1997].

6.3.2 Experimental evaluation of collaborative filtering via rating concentration

This section compares the maximum entropy (maxent) method against other approaches for both

synthetic and real data sets. A popular contender method is fast max-margin matrix factorization

(fMMMF) [Srebro et al., 2004] which factorizes the rating matrix subject to a low trace-norm prior.

One variant of MMMF uses logistic loss to penalize training rating errors, which provides a smooth

approximation of hinge-loss. The cost function for fast MMMF with all-threshold logistic loss is as

follows [Rennie, 2007]:

||U ||2F + ||V ||2F + C
∑

r,(i,j)∈T
ln
(

1 + esgn(Xij−r)(θir−u>i vj)
)
.

The sgn function outputs +1 when the input is positive and −1 otherwise. Consider a probabilistic

interpretation of fMMMF where the above cost function is viewed as a log-loss associated with the

likelihood

p(X,U, V |θ) =
∏

(i,j)∈T
p(Xij |ui, vj , θ)

∏

i

p(ui)
∏

j

p(vj).

The priors p(ui) and p(vj) on the user and item descriptors are zero-mean, spherical Gaussians

scaled by 1
C and the conditional rating probability is defined by

p(Xij |ui, vj , θ) ∝
∏

r

1

1 + e(sgn(Xij−r)(θir−u>i vj))
. (6.10)

The above formula allows direct comparison of log-likelihood performance of distributions esti-

mated via Equation (6.10) versus the proposed maximum entropy method. The logistic-loss Fast

MMMF method is evaluated using the author’s publicly available code [Rennie, 2007].

CHAPTER 6. COLLABORATIVE FILTERING 77

Two additional comparison methods were considered: the probabilistic matrix factorization

(PMF) technique [Salakhutdinov and Mnih, 2008b] and its Bayesian extension [Salakhutdinov and

Mnih, 2008a]. Both methods learn the parameters of the graphical model structure in Figure 6.2.

However, each makes parametric assumptions: Gaussian observation noise and Gaussian priors on

the user and item descriptors. PMF performs maximum a posteriori (MAP) estimation on the model

and Bayesian PMF uses Gibbs sampling to simulate integration over the Gaussian priors. Since

PMF only estimates Gaussian means, the noise parameters can be set subsequently by choosing the

value that produces the highest likelihood.

Table 6.2: Average likelihood and divergence results for synthetic data. Values are averages over 10

folds and statistically significant improvements (according to a two-sample t-test) are displayed in

bold. Higher log-likelihood and lower KL-divergence are better.

fMMMF Maxent

Log-Likelihood −39690± 214 −35732± 216

KL-divergence 11254± 315 4954± 154

Finally, for experiments with real data, we also compare against the likelihoods using simple es-

timators such as a uniform distribution over all ratings or an identical maximum likelihood estimate

p0(Xij) for all query ratings.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8.5

−8

−7.5

−7

−6.5

−6
x 10

5

√
ln 2/δ

A
v
e

ra
g

e
 L

o
g

 L
ik

e
lih

o
o

d

Uniform

Prior

fMMMF

PMF

Maxent

Figure 6.3: Average log likelihoods for each algorithm on Movielens data. The log-likelihoods are

plotted against the regularization or confidence parameter δ in the maximum entropy method.

CHAPTER 6. COLLABORATIVE FILTERING 78

Synthetic experiments One drawback of real data experiments is that ground truth rating dis-

tributions are not given, only samples from these are available. Therefore, consider a synthetic

scenario where the exact rating distributions are specified and used to generate samples to populate

the rating matrix.

First, 500 users and 500 items were sampled from a uniform probability density such that

ui, vj ∈ [0, 1]5. The rating distribution is then a multinomial with entries proportional to the

element-wise product of the corresponding user-item pair: p(Xij = r|ui, vj) ∝ ui(r)vj(r). Sub-

sequently, a random subset T of training ratings was formed by drawing one sample from 20% of

the entries of the rating matrix. These observed rating samples were provided to both fMMMF and

maxent. For both algorithms, 10% of the training set was used for cross-validation. The appropriate

scalar regularization parameter (C or δ) was chosen by maximizing likelihood on this validation set.

A random subset Q of testing ratings was then formed by drawing one sample from 20% of the

entries of the rating matrix (these entries were disjoint from the training entries). The out-of-sample

test likelihood was then computed over Q. This setting is similar to a typical testing procedure with

real data. Higher likelihood scores indicate a better estimate of the rating distribution however each

rating distribution is only sampled once. Therefore, we also report the Kullback-Leibler (KL) diver-

gence between the true query multinomials and the estimated distributions p(Xij |ui, vj). The above

experiment is repeated ten times and average results are reported across the trials. The maximum

entropy method obtains higher likelihood scores as well as lower divergence from the true distribu-

tion than the fMMMF method. The advantages are statistically significant under both performance

metrics. Table 6.2 summarizes the synthetic experiments.

Movie ratings This section compares several algorithms on the the popular Movielens data set.

This data set is a collection of over one million ratings from over six thousand users for over three

thousand movies. The ratings are integers ranging from 1 to 5. We randomly split the ratings in

half to define the training and query user-item pairs. To choose regularization parameters, 20% of

the training ratings were held out as a validation set. Finally, we test the resulting likelihoods on the

query ratings.

On three random splits of training/validation/testing sets, the log-likelihood of the testing rat-

ings was obtained for several methods. The maximum entropy method obtains the highest test like-

CHAPTER 6. COLLABORATIVE FILTERING 79

Table 6.3: Query rating log-likelihoods on Movielens data. The maximum entropy (maxent) method

has statistically significantly higher average likelihood over the three trials according to a two-

sample t-test with p value of as little as 1e − 5. We convert the threshold model of fMMMF to a

distribution for this comparison.

Uniform Prior fMMMF Distrib. PMF Maxent

Split 1 -8.0489e+05 -7.2800e+05 -6.6907e+05 -6.3904e+05 -6.1952e+05

Split 2 -8.0489e+05 -7.2796e+05 -6.6859e+05 -6.3936e+05 -6.1977e+05

Split 3 -8.0489e+05 -7.2809e+05 -6.6819e+05 -6.3987e+05 -6.1931e+05

Average -8.0489e+05 -7.2802e+05 -6.6862e+05 -6.3942e+05 -6.1953e+05

lihood, which improves over 20% more than the improvement obtained by the leading contender

method relative to the naive p0(x) prior. Figure 2 illustrates the average likelihood for various reg-

ularization parameter settings compared to the competing methods. Our likelihood improvement is

statistically significant according to a two-sample t-test with the rejection threshold below 1e − 5.

Log-likelihoods of each method are listed in Table 6.3.

We also compare `2 error on the ratings. This is done by recovering point-estimates for the

ratings by taking the expected value of the rating distributions. Comparing against other maximum-

likelihood methods like fMMMF and PMF, maxent obtains slightly higher accuracy. All three

methods are surpassed by the performance of Bayesian PMF, however. Interestingly, simply aver-

aging the predictions of fMMMF and maxent or the predictions of PMF and maxent produces more

accurate predictions than either algorithm alone. This suggests that the methods are complemen-

tary and address different aspects of the collaborative filtering problem. The `2 errors are listed in

Table 6.4.

6.3.3 Discussion

A method for collaborative filtering was provided that exploits concentration guarantees for func-

tions of ratings. The method makes minimal assumptions about the sampling structure while other-

wise remaining agnostic about the parametric form of the generative model. By assuming that users

and items are sampled iid, general concentration inequalities on feature functions of the ratings were

CHAPTER 6. COLLABORATIVE FILTERING 80

Table 6.4: Root mean square or `2 performance of various algorithms. Maxent gives the least error

among the MAP methods (fMMMF, PMF and maxent) but Bayesian PMF outperforms all methods.

Combining maxent with other MAP methods improves accuracy.

fMMMF PMF Maxent BPMF Maxent+fMMMF Maxent+PMF

Split 1 0.9585 0.9166 0.9168 0.8717 0.9079 0.8963

Split 2 0.9559 0.9175 0.9162 0.8710 0.9052 0.8965

Split 3 0.9583 0.9186 0.9166 0.8723 0.9065 0.8973

Average 0.9575 0.9176 0.9165 0.8717 0.9065 0.8967

obtained. A solution probability distribution constrained by these concentration inequalities was ob-

tained via the maximum entropy criterion. This method produces state-of-the-art performance by

exploiting different intuitions and simpler assumptions than leading contenders. Furthermore, the

proposed method is complementary with the assumptions in other approaches. Simply exploit-

ing concentration constraints produces strong collaborative filtering results and more sophisticated

models may also benefit from such bounds.

6.4 Summary of degree-based approaches to collaborative filtering

This section addresses the collaborative filtering problem. Initially a simple, binary instance of

collaborative filtering is posed as a graph estimation problem, where an algorithm is derived to post-

process a standard collaborative filtering technique to obey degree-based arguments. The degree-

based intuition is that, under a latent space sampling assumption, the rate of relations predicted in

testing data should be concentrated toward the empirical rate of relations in training data. These

degree-based arguments are then extended to a multi-rating, or multi-relational setting, where they

are used to estimate probabilities of ratings. The sampling assumptions in this chapter are equivalent

to the latent-space generative model for graphs, but by focusing only on the degree, or counting

statistics, the post-processing procedure can be used on any parameterization of the latent space, and

the maximum entropy estimation procedure performs estimation with an agnostic parameterization

of the latent space.

CHAPTER 6. COLLABORATIVE FILTERING 81

While the degree-based arguments in this chapter are engineered for the particular task, leading

to given degree priors, the next chapter addresses the case where the degree preferences are not

known and should be learned from observed data.

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 82

Chapter 7

Learning from and Predicting Networks

The preceding chapters have primarily handled the inference task with a given degree-sensitive

probability distribution. This chapter addresses the task of learning such a distribution from ob-

served data. The chapter begins with a motivational example demonstrating the utility of degree

information in modeling a synthetic network generated using the preferential attachment model.

Rather than being given a distribution directly, this example showcases the maximum a posteriori

technique when the unseen, latent graph structure generates data, and the prediction algorithm infers

the structure from the data observations in conjunction with degree priors. In this initial motivational

example, the degree priors and data generative model are given. The later sections of the chapter

describe an approach for simultaneously learning both the degree preference functions and the edge

data likelihood functions by posing the problem as structured metric learning.

The ideas discussed in this chapter build off of the background of Chapter 2, but are primarily

focused on leveraging node information in addition to network structure for learning and predic-

tion, as well as the application of degree information for the prediction task. As in prior studies, the

task of link prediction is to predict unobserved connections between nodes using models learned

from observed connectivity. The next few sections discuss approaches to this prediction task while

explicitly modeling node degrees and using degree-based subgraph estimation as a prediction func-

tion.

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 83

7.1 Exact degree priors in synthetic scale-free networks

This section describes a synthetic experiment testing the benefit of degree information for estimat-

ing a graph with a realistic degree distribution in the presence of observation noise. Using noisy

observations of graph edges, the target is to reconstruct the true graph. By comparing estimation

using degree information with estimation with no degree information, we seek insight into what

gains are made by using degrees in prediction.

We generate a graph using a preferential attachment model [Albert and Barabási, 2002], which

produces the power-law degree distributions seen in natural networks. This model generates graphs

with few high-degree nodes and many low-degree nodes, where the degree distribution has a power-

law decay toward higher degrees. Another important feature of preferential-attachment graphs is

that they are extremely sparse. We generate the graph of 500 nodes by first initializing two connected

nodes. We then grow the graph by adding nodes one at a time, connecting new incoming nodes

to a constant m of the current nodes in the graph, where the node to connect to is selected with

probability proportional to its current degree. This produces a “rich-get-richer” effect and generates

a graph with supposedly realistic structural properties. For the more realistic, very sparse graph, we

use m = 1, and to generate a less realistic, dense graph, we set m to 200.

Using each generated graph, we generate observations Xij for each pair of nodes by sampling

from a one-dimensional normal distribution with a mean at 1.0 if an edge exists between the node

pair and a mean at 0.0 if no edge is present. These observations are noisy indicators of edge pres-

ence. The observation Xij is sampled as

Xij ∈

N (1.0, σ) if Aij = 1,

N (0.0, σ) if Aij = 0.

We assume the variance and the conditional means are known. A simple estimation procedure with

minimal degree information is to compare the likelihood of the observed data for each of the two

possible means and estimate based on which likelihood is greater, incorporating a prior likelihood

Pr(Aij) = |E|/(|V |(|V | − 1)) for edge appearance estimated from the true graph. We refer to this

technique as independent MAP estimation using a simple prior, expressed as

argmax
A

∏

ij

Pr(Xij |Aij) Pr(Aij).

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 84

An intermediary technique, which somewhat preserves the known sparsity of the target graph, is to

select only the |E| most likely edges. The intermediary technique can be expressed as

argmax
A

∏

ij

Pr(Xij |Aij) Pr(A),

where Pr(A) is a global prior on A that puts uniform likelihood on graphs with |E| edges and zero

probability on other graphs. Finally, the most structure-preserving technique we compare is to find

the maximum likelihood b-matching using the true degrees of the nodes.

The results on the realistic, sparse graph show that as the noise parameter increases, performance

decreases for all three techniques. Nonetheless, until a critical noise level is reached, at which point

all methods fail, using b-matching with the exact degrees produces lower zero-one error than the

less structured approaches. Figure 7.1 contains plots of the error, the precision and the recall on the

edge variables. Note that the precision of the independent MAP estimate actually improves as the

noise parameter increases because it is in fact estimating that all but the few most certain edges are

off, providing good precision, while the other two methods must estimate that some edges are on.

Naturally, in a practical setting, a prediction of a completely disconnected graph cannot possibly be

useful, so we consider this behavior pathological. This is why we also compare the three techniques

on the dense graph, where 0.4831 of possible edges are active. On the dense graph, b-matching is

always more accurate according to all three metrics for all noise levels.

Finally, it is important to note that, while measurements in this experiment focus on accuracy,

there are settings where the structure is not just a tool to improve estimation accuracy but a neces-

sity. In those settings, the independent or the intermediary approaches may not even yield useable

estimates.

7.2 Structured metric learning approaches for graph prediction

Most of the models and methods discussed so far in this thesis either expect that the graph distri-

bution is known or that the an estimate of the graph distribution is engineered. In some scenarios,

it is natural to devise a model for edge likelihood and degree preferences. In many other scenarios,

however, the best edge potentials and degree preferences are unknown and difficult to design. In

these scenarios, it is useful to have a learning algorithm that can automatically determine what edge

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 85

0 0.5 1
0

0.1

0.2

0.3

0.4

E
rr

o
r

σ

0 0.5 1

0.7

0.8

0.9

1

P
re

c
is

io
n

σ

0 0.5 1

0.7

0.8

0.9

1

R
e

c
a

ll

σ

(a) Dense graph

0 0.1 0.2 0.3 0.4
0

0.005

0.01

0.015

E
rr

o
r

σ

0 0.1 0.2 0.3 0.4
0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

σ

0 0.1 0.2 0.3 0.4
0.2

0.4

0.6

0.8

1

R
e

c
a

ll

σ

Independent MAP

Top |E|

b−matching

(b) Sparse graph

Figure 7.1: Error and accuracy measures of synthetic graph reconstruction. Independent MAP

is using a single prior for all edges, Top |E| is estimating that the |E| most likely edges are on,

regardless of what nodes they connect, and b-matching uses the true degrees. The plots from left to

right are error, where lower is better, precision, where higher is better, and recall, where higher is

better. The horizontal axis is the Gaussian noise parameter σ used to sample the observed data.

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 86

weights and degree preferences most genuinely represent relevant data. This section covers an ap-

proach to learning model parameters that allows for generalized graph structure prediction in new

data. The techniques described here learn a model from node data and labeled graph connectivity,

which generalizes to new, previously unseen data.

A natural technique for determining edge likelihoods is to parameterize the likelihood with a

similarity between nodes. Under the assumption that some measure of similarity is strongly corre-

lated with connectivity, a concept often referred to as homophily in social network analysis [Chris-

takis and Fowler, 2011], ideas from metric learning can be adopted to the task of graph prediction.

Given descriptions of two nodes, some measure of similarity should indicate how likely they are to

be connected in a network.

Empirical evidence in the previous section indicates a significant advantage when using de-

grees in conjunction with edge likelihoods in predicting graph structure. However, in more realistic

testing scenarios, the target degrees of query nodes is unknown. The degree distribution for some

nodes may be non-stationary and depend on their attributes, particularly if such attributes contain

information representing the capacity for edges of that node. For example, in the LinkedIn online

social network, an individual whose job occupation is “Marketing Agent” is likely to have more

connections than an individual whose occupation is “Mathematician”.

Combining the ideas that node similarity relates to edge likelihood and that degree preference

is dependent on node attributes yields a learnable, conditional model for graph structure likelihood

conditioned on node features. The learning task is referred to as degree distributional metric learn-

ing (DDML) [Shaw et al., To appear]. The sections below describe such the degree distributional

metric model, learning algorithms for the model parameters, variants and experiments using DDML.

Related Work Metric learning is often applied to supervised problems such as classification

[Chechik et al., 2010; Weinberger and Saul, 2009]. These methods first build a k-nearest neigh-

bors graph from training data and then learn a Mahalanobis distance metric keeping points with the

same label close while pushing away class impostors, pairs of points which are connected but of

a different class. Like these previous metric learning methods, DDML aims to learn a metric that,

when combined with degree preferences, produces a graph that matches as closely as possible with

the original input connectivity structure. Instead of pushing away class impostors, DDML pushes

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 87

away graph impostors, disconnected points that are close in distance. Moreover, traditional metric

learning algorithms impose no requirements on the degree distribution of the connectivity matrix

found under the learned metric, whereas DDML ensures the degree distribution of the induced con-

nectivity closely matches that of the true connectivity.

The training phase of the DDML algorithm is similar to structure preserving embedding (SPE)

[Shaw and Jebara, 2009]. SPE learns coordinates for nodes in a graph such that applying a connec-

tivity algorithm to those node coordinates yields the original adjacency matrix. Where SPE learns an

embedding explicitly from only the target adjacency matrix, DDML learns a metric corresponding

to a linear transformation of additional node features given as input. Furthermore, SPE constrains

the exact degrees of the nodes in the input graph, DDML learns more general degree preference

functions based on the attributes of the nodes. This additional mapping between features and de-

grees allows the learned degree distribution metric to be applied to new, unseen graphs. Like SPE,

DDML can use cutting-plane approach similar to that of structured prediction, and is thus strongly

related to results by [Caetano et al., 2009] wherein the weights of a linear assignment problem, i.e.,

maximum weight bipartite matching, are learned to closely mimic a quadratic assignment problem.

Their formulation as a maximum margin empirical risk minimization also results in a quadratic

optimization similar in form to structural support vector machines [Joachims et al., 2009].

The stochastic version of the DDML algorithm is related to the PEGASOS support vector

machine (SVM) algorithm [Shalev-Shwartz et al., 2007], which, through the use of stochastic op-

timization, solves the SVM optimization in time independent of the number of data points in the

input.

7.3 Degree distributional metric learning

Degree distributional metric learning (DDML) aims to simultaneously learn similarity and degree

preference functions that accurately predict graph structure from node descriptor data [Shaw et al.,

To appear]. Given as input an adjacency matrix A ∈ Bn×n, and node features X ∈ Rd×n, DDML

learns a similarity function f : {RD,RD} 7→ R that takes two vectors as input and outputs a real

value, and a degree preference function g : {RD,N} 7→ R, which takes a node descriptor and a

candidate degree d and outputs a real valued preference score for that node having degree d.

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 88

The degree distributional metric is parameterized by matrices M ∈ RD×D and S ∈ Rn×D. The

distance between two points under the metric is defined as DM(xi,xj) = (xi − xj)
>M(xi − xj).

When the metric is the identity M = Id, DM(xi,xj) represents the squared Euclidean distance

between the i’th and j’th points. Using the notation that sc is the 1×D dimensional c’th row of S,

0 10 20 30 40 50
0

50

100

150
Degree Preference Model

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimension 1

D
im

e
n

s
io

n
 2

Data Features

0 10 20 30 40 50
0

20

40

60

80

Degree

Node Degree Preferences

Dimension 1

Dimension 2

Figure 7.2: Example of non-stationary degree preference functions. This image illustrates the degree

preference functions of three different nodes in R2. The descriptors of the nodes are shown on the

left. Top right: The curves are the cumulative sum of the degree preference parameter S along each

dimension. These curves are the bases for nodes’ degree preference functions. Bottom right: The

resulting degree preference functions, each of which is a linear combination of the bases above. For

example, the blue circle node has a high value on Dimension 1 and a low value on Dimension 2, so

its resulting degree preference is skewed toward high degrees like the basis for Dimension 2.

the degree preference function is

g(xi, b;S) =

b∑

c=1

scxi.

This linear function of b can be viewed as a weighted sum of degree preference functions, de-

fined along the columns of S, scaled by the dimensions of xi. Figure 7.2 illustrates a simple two-

dimensional example of degree preferences resulting from points in different parts of the input

space.

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 89

A graph is predicted by finding a connectivity that maximizes the sum of the similarity between

neighbors and the degree preference functions for in-degree and out-degree of each node. The

prediction operation computes

argmax
A

F (A|X,M,S), (7.1)

where

F (A|X,M,S) = −
∑

ij|Aij=1

DM(xi,xj ;M) +
∑

i

g

xi,

∑

j

Aij ;S

 .

Prediction function (7.1) is a parameterized form of the degree-based subgraph estimation ob-

jective (3.1), which can be efficiently optimized by the procedure in Chapter 3.

7.3.1 Structured prediction learning

Given input training data, a learning algorithm aims to fit the parameters M and S to minimize

a regularization term and empirical risk according to a loss function between the labeled graph

connectivities and the predicted connectivities. We use the normalized Hamming distance for the

loss function

∆(A, Ã) =
∑

ij|Aij 6=Ãij

1

n2 − n,

which is the proportion of possible edges (assuming no self-loops) that are misclassified. Using the

Frobenius `2-norm of the parameter matrices as a regularization term, learning is done by solving

min
M,S,ξ

λ

2

(
||M||2Fro + ||S||2Fro

)
+ ξ

s.t.
[
F (A|X,M,S)− F (Ã|X,M,S)

]
≥ ∆(A, Ã)− ξ,∀Ã. (7.2)

We can optionally add a concavity requirement if the values in the data vectors are non-negative.

Without this constraint, the concavity of the degree preference functions is implicitly enforced. For

non-negative data, the concavity of function g(·) is maintained by enforcing that, for 1 ≤ i ≤
n− 1, 1 ≤ j ≤ d,

Si,j ≥ Si+1,j . (7.3)

The optimization is a quadratic program with exponentially many linear constraints, and is, with

the exception of the concavity constraints, of the same form as a structural support vector machine

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 90

(SVM) [Joachims et al., 2009]. Thus, the established cutting-plane approach (with known effi-

ciency guarantees) can be applied. The solution to (7.2) is found by maintaining a working set of

constraints, solving for the optimal M and S, then adding the worst-violated constraint by the cur-

rent solution and repeating. Borrowing the terminology from structural SVM, the procedure that

finds the worst violated constraint is called the separation oracle.

Algorithm 5 Degree distributional metric learning with cutting-plane optimization.
Require: Labeled graph {X,A}, regularization parameter λ, and stopping tolerance ε

1: Initialize M,S {e.g., M← I and S← [0]}
2: Constraint set C ← ∅ {or optionally add concavity constraints from Eq. (7.3)}
3: repeat

4: (M,S, ξ)← argminM,S,ξ≥0
λ
2

(
||M||2Fro + ||S||2Fro

)
+ ξ s.t. C

5: (Optional) Project M onto PSD cone

6: Ã← argmaxA F (A|X,M,S) + ∆(A,A)

7: C ← C ∪
[
F (A|X,M,S)− F (Ã|X,M,S)

]
≥ ∆(A, Ã)− ξ

8: until ∆(A, Ã)− ξ −
[
F (A|X,M,S)− F (Ã|X,M,S)

]
< ε

Separation Oracle Since the constraint involves independent candidate adjacency matrices, each

worst-violator Ã can be found independently using the following maximization which is almost

identical to the prediction function in Eq. 7.1,

Ã = argmax
A

F (A|X,M,S) + ∆(A,A).

The above can be maximized by adding the decomposed loss to the primary edge weights of the

b-matching input. Specifically, for edge (i, j), let edge weight w(xi, xj) be

w(xi, xj) =

f(xi,xj ;M)− 1

(n2−n)
if Aij = 1,

f(xi,xj ;M) + 1
(n2−n)

if Aij = 0.

Essentially, adding these loss terms rewards the separation oracle for selecting connectivities that

are both high weight and high loss.

Constraints on M and S A useful tool for computing distances is the linear transform

DM(xi,xj) = x>i Mxi + x>j Mxj − x>i Mxj − x>j Mxi, (7.4)

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 91

which allows linear constraints on the distances to be written as linear constraints on the M matrix.

For notational cleanliness, let the degrees of all nodes be stored in array c, such that the degree in

A of the i’th node is c[i] =
∑

j Aij , and let the degree in Ã be stored in c̃. For any false graph Ã,

the linear constraint on M and S is

∆(A, Ã)− ξ ≤ tr

M>

∑

ij

(Aij − Ãij)
(
xix
>
i + xjx

>
j − xix

>
j − xjx

>
i

)

+ tr

S>

∑

i

c[i]∑

d=c̃[i]

δdx
>
i −

c̃[i]∑

d=c[i]

δdx
>
i

 , (7.5)

where each δd is an n × 1 vector of all zeros except in the d’th entry, and is thus used to construct

the appropriate matrix coefficient for the S matrix.

Analysis of structured SVM learning A cutting-plane implementation of structural SVM using

the objective, separation oracle, and constraints detailed in the previous few pages optimizes Equa-

tion 7.2 by maintaining a working set of constraints, and at each iteration adding the worst-violating

constraint from the separation oracle. This optimization procedure is summarized in Algorithm 5.

Each iteration is at least the cost of the separation oracle, which isO(n3). Thus, the running time of

the algorithm is prohibitive for large graphs. The next section describes a stochastic variant of the

learning algorithm that solves a relaxation of the objective, but whose running time does not depend

on the size of the graph.

7.3.2 Stochastic large-scale learning

Unfortunately, the structured SVM approach for DDML requires iteratively solving maximum

weight b-matchings, which becomes expensive in larger graphs. A stochastic learning strategy

allows learning of large-scale graphs, and, by parameterizing the degree preference function only

up to a fixed maximum degree, also eliminates the dependence of the running time on the size of

the graph.

A DDML objective can be written in terms of triplets of nodes i, neighbor j, disconnected node

triplets k. The set of all triplets is

T = {(i, j, k)|Aij = 1 ∧Aik = 0}.

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 92

Let A(i,j,k) denote the false graph produced by toggling the edge between nodes i and j and the

edge between nodes i and k. The DDML objective using the triplet-style constraints is

min
M,S

L =
λ

2
||M||2 − 1

|T |
∑

(i,j,k)∈T
max(F (A|X;M,S)− F (A(i,j,k)|X;M,S) + 1, 0). (7.6)

The difference in scores decomposes into four scalar values, since the only differences between A

to A(i,j,k) are that A(i,j,k) is missing edge (i, j), gains edge (i, k), the degree of node j decreases by

one and the degree of node k increases by one. Thus, the difference can be computed by evaluating

the distance from node i to node j, the distance from node i to node k, the change in degree prefer-

ence score from the degree of node j to its degree minus one, and the change in degree preference

from the degree of node k from its degree plus one. The difference is then computable as

F (A|X;M,S)− F (A(i,j,k)|X;M,S) = DM(xi,xj)−DM(xi,xk) + x>j s(c[j]−1) − x>k s(c[k]+1).

This formulation eliminates the need for the expensive separation oracle and allows stochastic op-

timization. Using the distance transformation in Equation 7.4, each of the |T | constraints can be

written using a sparse matrix C(i,j,k), where

C
(i,j,k)
jj = 1, C

(i,j,k)
ik = 1, , C

(i,j,k)
ki = 1, , C

(i,j,k)
ij = −1, C

(i,j,k)
ji = −1, , C

(i,j,k)
kk = −1, (7.7)

and whose other entries are zero. By construction, sparse matrix multiplication of C(i,j,k) in-

dexes the proper elements related to nodes i, j, and k, such that tr(C(i,j,k)X>MX) is equal to

DM(xi,xj)−DM(xi,xk). The partial subgradient of L at M is then

∂L

∇M = λM +
1

|T |
∑

(i,j,k)∈T+
XC(i,j,k)X>, (7.8)

where T+ = {(i, j, k)|F (A|X;M,S) − F (A(i,j,k)|X;M,S) + 1 > 0}. The subgradient with

respect to S is nonzero only along the degrees that change for each triplet, which are at the j’th and

k’th nodes,

∂L

∇S = λS +
1

|T |
∑

(i,j,k)∈T+
δ(c[j]−1)x

>
j + δ(c[k]+1)x

>
k . (7.9)

To optimize Equation (7.6), we propose using stochastic subgradient descent, by iteratively sam-

pling a random subset of triplets from T and taking a gradient step with a decaying learning rate.

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 93

To retain coherence between the different degree functions, we add a requirement that the re-

sulting degree preference function for each node is concave. One way to enforce concavity is by

stochastically sampling a node i per iteration, and projecting S such that entries in x>i S are in de-

creasing order. If further scalability is desired, another strategy is to take a gradient step toward this

projection, rather than computing the full projection.

In practice, we optimize this objective function via stochastic subgradient descent. We sample a

batch of triplets, replacing T in the objective function with a random subset of T of size B. If a true

metric is necessary, we intermittently project M onto the PSD cone. The pseudocode for stochastic

DDML is in Algorithm 6.

Analysis of stochastic DDML Since the stochastic DDML learning algorithm no longer depends

on the separation oracle, for this analysis, we omit in this analysis the concavity constraint on g,

noting that, in practice, adding projections toward concavity seem to maintain the same convergence

behavior derived here. Thus, the stochastic optimization is an instance of the PEGAGOS algorithm

[Shalev-Shwartz et al., 2007], albeit a cleverly constructed one. The running time of PEGASOS

does not depend on the input size, and instead only scales with the dimensionality, the desired

optimization error on the objective function ε and the regularization parameter λ. The optimization

error ε is defined as the difference between the found objective value and the true optimal objective

value, f(M̃)−minM f(M).

Theorem 7.3.1. Assume that the data is bounded such that max(i,j,k)∈T ||XC(i,j,k)X>||2F ≤ R,

and R ≥ 1. During Algorithm 6 at iteration T , with λ ≤ 1/4, and batch-size B = 1, let M̄ =

1
T

∑T
t=1 Mt be the average M so far. Then, with probability of at least 1− δ,

f(M̄)−min
M

f(M) ≤ 84R2 ln(T/δ)

λT
.

Consequently, the number of iterations necessary to reach an optimization error of ε is Õ(1
λε).

Proof. The theorem is proven by realizing that, omitting the optional PSD projection step and

the concavity projection, Algorithm 5 is an instance of PEGASOS without a projection step on

one-class data, since Corollary 2 in [Shalev-Shwartz et al., To appear] proves this same bound for

traditional SVM input, also without a projection step. The input to the SVM is the set of all con-

catenations of the d× d matrices XC(i,j,k)X> and the S degree parameter matrices as constructed

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 94

Algorithm 6 Stochastic degree distributional metric learning using subgradient descent
Require: A ∈ Bn×n, X ∈ Rd×n, regularization parameter λ, maximum iterations tmax, and mini-

batch size B

1: M1 ← Id, S1 ← 0d,n

2: Compute degree array c s.t. c[i] =
∑

j Aij ,∀i
3: for t from 1 to tmax − 1 do

4: ηt ← 1
λt

5: C← 0n,n

6: S′ ← λS

7: for b from 1 to B do

8: (i, j, k)← Sample random triplet from T = {(i, j, k) | Aij = 1, Aik = 0}
9: if F (A|X;Mt,St)− F (A(i,j,k)|X;Mt,St) + 1 > 0 then

10: Cjj ← Cjj + 1, Cik ← Cik + 1, Cki ← Cki + 1

11: Cij ← Cij − 1, Cji ← Cji − 1, Ckk ← Ckk − 1

12: s′(c[j]−1) ← s′(c[j]−1) + xj

13: s′(c[k]+1) ← s′(c[k]+1) − xk

14: end if

15: end for

16: ∇t ← XCX> + λMt

17: Mt+1 ←Mt − ηt∇t
18: St+1 ← St − ηtS′

19: i← Sample random index

20: Project S so x>i S is monotonically nonincreasing

21: Optional: Mt+1 ← [Mt+1]+ {Project onto the PSD cone}
22: end for

23: return MT

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 95

in Equation (7.9) for each triplet (i, j, k) ∈ T .

Note that the large size of set T plays no role in the running time; each iteration requires O(d2)

work to compute the updated M matrix. In practice, the S matrix needs only be defined for all

viable degrees, rather than all degrees from 1 to n, thus each matrix should take O(dmax(c)) work

to update. Assuming the node feature vectors are of bounded norm, the radius of the input data R

is constant with respect to n, since each is constructed using the feature vectors of three nodes. In

practice, as in the PEGASOS algorithm, we propose using MT as the output instead of the average,

as doing so performs better on real data, but an averaging version is easily implemented by storing

a running sum of M matrices and dividing by T before returning.

7.4 Structure preserving metric learning

This section provides a sibling-algorithm to degree distributional metric learning, in which the graph

is predicted by running a predetermined connectivity algorithm using a learned distance. Structure

preserving metric learning (SPML) learns an M which is structure preserving, as defined in Def-

inition 7.4.1 [Shaw et al., To appear]. Given a connectivity algorithm G, SPML learns a metric

such that applying G to the input data using the learned metric produces the input adjacency ma-

trix exactly. Possible choices for G include maximum weight b-matching, k-nearest neighbors,

ε-neighborhoods, or maximum weight spanning tree.

Definition 7.4.1. Given a graph with adjacency matrix A, a distance metric parametrized by M ∈
Rd×d is structure preserving with respect to a connectivity algorithm G, if G(X,M) = A.

Algorithms for learning structure preserving metrics are similar to the algorithms described in

Section 7.3. The following section describes in detail a stochastic method for learning a structure

preserving embedding using the k-nearest neighbor connectivity algorithm.

7.4.1 Stochastic SPML with k-nearest neighbor

This section describes a learning algorithm that learns a structure preserving metric using the k-

nearest neighbor connectivity algorithm. As in the stochastic version of DDML in Section 7.3,

structure preserving embedding can be written as an objective over node-neighbor-imposter triplets.

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 96

Again, let set T = {(i, j, k) | Aij = 1, Aik = 0} contain all triplets. Regularizing M with the

Frobenius norm, the objective function for SPML is

f(M) =
λ

2
||M||2F −

1

|T |
∑

(i,j,k)∈T
max(DM(xi,xj)−DM(xi,xk) + 1, 0).

Again using the distance transformation in Equation 7.4, and the construction of the sparse C ma-

trices in Equation (7.7), the subgradient of f at M is the same as the partial gradient in DDML,

∇f = λM +
1

|T |
∑

(i,j,k)∈T+
XC(i,j,k)X>,

where T+ = {(i, j, k)|DM(xi,xj) − DM(xi,xk) + 1 > 0}. If this quantity is negative for all

triplets, there exists no unconnected neighbor of a point which is closer than a point’s farthest

connected neighbor – precisely the structure preserving criterion for nearest neighbor algorithms.

The k-nearest neighbor SPML algorithm is listed in Algorithm 7.

Stochastic SPML has the same convergence guarantees of DDML, but only learns metric pa-

rameter M, significantly reducing the number of free variables being optimized and accordingly

reducing the constant cost per iteration, leading to a much faster learning algorithm. The primary

drawback is that, given a structure preserving embedding, prediction of a new graph is not obvious,

since it is unknown how many neighbors to connect in a new graph. With DDML, the mapping

from new nodes to target degrees is also available, so a full predictive model is possible, whereas

with SPML, only a ranking of possible edges by the learned distance is available.

7.5 Experiments with DDML and SPML

We compare DDML and SPML to a variety of methods for predicting links from node features: Eu-

clidean distances, relational topic models (RTM) , and traditional support vector machines (SVM).

A simple baseline for comparison is how well the Euclidean distance metric performs at ranking

possible connections. Relational topic models learn a link probability function in addition to latent

topic mixtures describing each node [Chang and Blei, 2010]. For the SVM, we construct training

examples consisting of the pairwise differences between node features. Training examples are la-

beled positive if there exists an edge between the corresponding pair of nodes, and negative if there

is no edge. Because there are potentially O(n2) possible examples, and the graphs are sparse, we

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 97

Algorithm 7 Structure preserving metric learning with nearest neighbor constraints and optimiza-

tion with projected stochastic subgradient descent
Require: A ∈ Bn×n, X ∈ Rd×n, and parameters λ, T,B

1: M1 ← Id

2: for t from 1 to T − 1 do

3: ηt ← 1
λt

4: C← 0n,n

5: for b from 1 to B do

6: (i, j, k)← Sample random triplet from T = {(i, j, k) | Aij = 1, Aik = 0}
7: if DMt(xi,xj)−DMt(xi,xk) + 1 > 0 then

8: Cjj ← Cjj + 1, Cik ← Cik + 1, Cki ← Cki + 1

9: Cij ← Cij − 1, Cji ← Cji − 1, Ckk ← Ckk − 1

10: end if

11: end for

12: ∇t ← XCX> + λMt

13: Mt+1 ←Mt − ηt∇t
14: Optional: Mt+1 ← [Mt+1]+ {Project onto the PSD cone}
15: end for

16: return MT

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 98

subsample the negative examples so that we include a randomly chosen equal number of negative

examples as positive edges. Without subsampling, the SVM is unable to run our experiments in

a reasonable time. We use the SVMPerf implementation for our SVM [Joachims, 2006], and the

authors’ code for RTM [Chang and Blei, 2010].

An SVM with these inputs can be interpreted as an instance of SPML using diagonal M and the

ε-neighborhood connectivity algorithm, which connects points based on their distance, completely

independently of the rest of the graph structure. We thus expect to see better performance using

DDML and SPML in cases where the structure is important. The RTM approach is appropriate for

data that consists of counts, and is a generative model which recovers a set of topics in addition

to link predictions. Despite the generality of the model, RTM does not seem to perform as well

as discriminative methods in our experiments, especially in the Facebook experiment where the

data is quite different from bag-of-words features. For DDML and SPML, we run the stochastic

algorithm with batch size 10. We skip the PSD projection step, since these experiments are only

concerned with prediction, and obtaining a true metric is not immediately necessary. Both DDML

and SPML are implemented in MATLAB and require only a few minutes to converge for each of

the experiments below.

For DDML, the prediction task of ranking is not entirely natural to the model, since the de-

gree component of the predictor function causes the edges to no longer have a single independent

distance-based score. Two options possible for ranking from a DDML model are: (1) ignore the

degree component and simply rank using the distance parameterized by the learned M matrix, or

(2) predict using the degree component by using the degree of the training nodes, or considering

the total prediction function score for a new graph created by appending each held-out edge to the

observed training graph. Neither of these methods completely leverages the richness of the DDML

prediction function, yet produce state-of-the-art performance.

Wikipedia articles We apply SPML to predicting links on Wikipedia pages. We first create a

few subnetworks consisting of all the pages in a given category, their bag-of-words features, and

their connections. We choose three categories: “graph theory topics”, “philosophy concepts”, and

“search engines”. We use a word dictionary of common words with stop-words removed. For each

network, we split the data with 20% of the nodes are held out for evaluation. On the remaining

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 99

80% we cross-validate (five folds) over the parameters for each algorithm (RTM, SVM, DDML,

SPML), and train a model using the best-scoring regularization parameter. For DDML and SPML,

we use a sparse diagonal metric matrix M, clamping all off-diagonal entries to zero, since the high-

dimensionality of the input features reduces the benefit of cross-feature weights. On the held-out

nodes, we task each algorithm to rank the unknown edges according to distance (or another measure

of link likelihood), and compare the accuracy of the rankings using receiver operator characteristic

(ROC) curves. Table 7.1 lists the statistics of each category and the average area under the curve

(AUC) over three train/test splits for each algorithm. ROC curves for the “philosophy concepts”

category is shown in Figure 7.3. For the small Wikipedia categories, SPML and DDML provide a

distinct advantage over other methods. One possible explanation for why the SVM is unable to gain

performance over Euclidean distance is that the wide range of degrees for nodes in these graphs

makes it difficult to find a single threshold that separates edges from non-edges. In particular, the

“search engines” category had an extremely skewed degree distribution, and is where SPML shows

the greatest improvement.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

false positive rate

tru
e

po
si

tiv
e

ra
te

DDML
SPML
Euclidean
RTM
SVM
Random

Figure 7.3: ROC curve for various algorithms on the “philosophy concepts” category.

We also apply SPML and DDML to a larger subset of the Wikipedia network, by collecting

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 100

word counts and connections of 100,000 articles in a breadth-first search rooted at the article “Phi-

losophy”. The experimental setup is the same as previous experiments, but we use a 0.5% sample

of the nodes for testing. We stop each stochastic optimization after ten minutes on a desktop com-

puter. The resulting AUC on the edges of the held-out nodes is listed in Table 7.1 as the “Philosophy

Crawl” dataset. The SVM and RTM do not scale to data of this size, whereas SPML offers a clear

advantage over using Euclidean distance for predicting links, while DDML also provides a lift.

Table 7.1: Wikipedia (top), Facebook (bottom) dataset and experiment information. Shown below:

number of nodes n, number of edges |E|, dimensionality d, and AUC performance. The small

Wikipedia categories (*) are ranked by DDML using degree information from the training graph,

and the other data sets are ranked using only the learned distance.

n |E| d Euclid. RTM SVM SPML DDML

Graph Theory 223 917 6695 0.624 0.591 0.610 0.722 0.691*

Philosophy Concepts 303 921 6695 0.705 0.571 0.708 0.707 0.746*

Search Engines 269 332 6695 0.662 0.487 0.611 0.742 0.725*

Philosophy Crawl 100k 4m 7702 0.547 – – 0.601 0.562

Harvard 1937 48k 193 0.764 0.562 0.839 0.854 0.848

MIT 2128 95k 173 0.702 0.494 0.784 0.801 0.797

Stanford 3014 147k 270 0.718 0.532 0.784 0.808 0.810

Columbia 3050 118k 251 0.717 0.519 0.796 0.818 0.821

Facebook social networks Applying DDML and SPML to social network data allows us to more

accurately predict who will become friends based on the profile information for those users. We use

Facebook data [Traud et al., 2011], where we have a small subset of anonymized profile information

for each student of a university, as well as friendship information. The profile information consists

of gender, status (meaning student, staff, or faculty), dorm, major, and class year. Similarly to

the Wikipedia experiments in the previous section, we compare DDML and SPML to Euclidean,

RTM, and SVM. For DDML and SPML, we learn a full M, including cross-feature weights. For

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 101

each person, we construct a sparse feature vector where there is one feature corresponding to every

possible dorm, major, etc. for each feature type. We select only people who have indicated all five

feature types on their profiles. Table 7.1 shows details of the Facebook networks for the four schools

we consider: Harvard, MIT, Stanford, and Columbia. We perform a separate experiment for each

school, holding out 20% of the nodes for testing. We use the training data to select parameters via

five-fold cross validation, and train a model. The AUC performance on the held-out edges are also

listed in Table 7.1. It is clear from the quantitative results that structural information is contributing

to higher performance for DDML and SPML as compared to other methods.

0 0.1 0.2 0.3 0.4 0.5

status
gender

major
dorm
year

Relative Importance

Harvard
MIT
Stanford
Columbia

Figure 7.4: Comparison of Facebook social networks from four schools in terms of feature impor-

tance computed from the learned structure preserving metric.

By looking at the weight of the diagonal values in M learned by SPML, normalized by the total

weight, we can determine which feature differences are most important for determining connectiv-

ity. Figure 7.4 shows the normalized weights averaged by feature types for Facebook data. Here we

see the feature types compared across four schools. For all schools except MIT, the graduating year

is most important for determining distance between people. For MIT, dorms are the most important

features. A possible explanation for this difference is that MIT is the only school in the list that

makes it easy for students to stay in a residence for all four years of their undergraduate program,

and therefore which dorm one lives in may affect more strongly the people they connect to.

CHAPTER 7. LEARNING FROM AND PREDICTING NETWORKS 102

7.6 Discussion of learning from and predicting networks

This chapter proposes techniques for solving the problem of learning the parameters to a degree-

aware distribution over graphs for the purpose of network prediction. Initial motivation is provided

by a synthetic experiment where knowing the degrees of a network significantly benefits predic-

tion from observed data. Two variants of metric learning algorithms are then proposed for learning

a mapping from node features to edge potentials, as well as degree potentials in degree distribu-

tional metric learning. These algorithms are initial attempts to leverage the rich space of models

representable in the degree-based subgraph estimation framework.

Another novel aspect of the techniques in this chapter is the merging of structural connectivity

information with nonstructural node data. There is a surprising scarcity in the literature of methods

that simultaneously consider both aspects. Many link prediction algorithms, as reviewed in Chap-

ter 2, model only the links of graph data. When learning a structure preserving metric, the learned

metric attempts to correlate the node features with the structural behavior as much as possible,

while learning a degree distributional metric simultaneously learns a structural component while

also correlating the features to structure.

CHAPTER 8. CONCLUSIONS AND DISCUSSION 103

Chapter 8

Conclusions and Discussion

As much novel content that fills the chapters preceding this final chapter, this thesis is but an early

step in its important research direction. This thesis provides methods for degree-based graph pre-

diction and some extensions and variations, focusing on the inclusion of the structural measure of

degree in computationally efficient and exact structure estimation.

8.1 Contributions

This thesis contributes the following original concepts to the current state-of-the-art:

• I describe a probability distribution over graph structures that is dependent on the existence

of edges as well as the degrees of each node, and derive a procedure for efficient maximum

likelihood inference of graph structure. The procedure reduces the maximum likelihood esti-

mation to the well-studied maximum weight b-matching problem.

• I derive a distributable message-passing algorithm from belief propagation for solving maxi-

mum weight b-matchings, which is proven to converge to the true solution under well-defined

conditions. This is one of few known convergence proofs for loopy max-product belief prop-

agation.

• I further derive various scalability improvements for the belief propagation algorithm, allow-

ing the exact solution using belief propagation of much larger dense b-matching problems

than previously possible.

CHAPTER 8. CONCLUSIONS AND DISCUSSION 104

• I provide algorithms exploiting degree-based arguments to solve the collaborative filtering

problem, a variant of which achieves state-of-the-art performance with a convex optimization

using counting statistics interpretable as degrees in a multi-relational graph.

• I derive a learning algorithm for learning distribution parameters for degree-based graph esti-

mation by implementing maximum margin structured prediction. A stochastic variant of this

algorithm allows learning in large-scale settings.

8.2 Open questions and future work

Learning degree information from observed networks reveals a significant challenge for structure-

based network analysis. In practically all observed networks, the available data is incomplete. For

example, any measured human social network is incomplete until all humans, real or imaginary, who

have ever existed are included in the data. Only with the complete set of all possible human social

relationships can we claim to have observed the true structure. Concerning degrees, an approach

to handle this incompleteness is to assume that all observed degrees bound the true degrees from

below, but how to avoid overestimating true, latent degrees remains an open problem. With more

complex measures of structure, the incompleteness of measured networks is too an important open

problem.

Relatedly, the performance evaluation of network prediction is typically done, as in the ex-

periments within this thesis, by measures derived for independent predictions, such as accuracy,

ranking, precision, or recall. These measures are ignorant of structure, and thus it is possible that a

prediction that performs well in these independent measures may in fact be unrealistic structurally.

Theoretical and empirical exploration of structure-aware measures of network prediction quality

will be a useful direction for future research.

The relationship between the belief propagation algorithm described in Chapter 4 and the lin-

ear programming (LP) relaxation of b-matching added insight into the relationship between max-

product and LP relaxations in general. Various work has been published since exploring message-

passing algorithms based directly on solving LP relaxations of the general inference problem.

Progress continues in the research community on understanding the properties of these message-

passing inference algorithms.

CHAPTER 8. CONCLUSIONS AND DISCUSSION 105

Better understanding and practical implementation of a fully distributed version of these

message-passing algorithms, especially the b-matching solver in this thesis will be of great interest

for network research. Since the algorithm easily distributes between nodes in a graph, performing

network prediction by having nodes pass messages to their neighbors allows for graph prediction

to be computed by the graph itself, possibly allowing privacy-preserving properties. Furthermore,

recent advances in belief propagation analysis has provided an example of fully-distributed solution

detection for the min-cost flow problem [Gamarnik et al., 2010], which generalizes b-matching.

Thus, formulating the distributed stopping criterion specifically for b-matching will be a useful ad-

dition to the established algorithms.

Finally, Chapter 7 deals with the combination of node data with network connectivity. All real

networks have node attributes, yet they are often not measured or intentionally omitted because

there is a lack of established methods to elegantly handle both network connectivity and node data.

This is unfortunate and embarrassing, and new algorithms in addition to the ones proposed in this

thesis for simultaneously modeling node attributes and network connectivity will have immediate

impact for network researchers.

8.3 Discussion

The ideas in this thesis represent a significant portion of the research I have done during my doc-

toral program, which is a relatively arbitrary window in the continuum of research by the machine

learning, statistics, artificial intelligence, and data mining communities as a whole. While most of

this thesis text is aimed to construct a cohesive narrative with a figurative beginning, middle, and

end, this final paragraph aims to do the exact opposite; the work described here builds off that of

my contemporaries around the world, and will lead to more work by others and me that will aim

to immediately make the techniques in this thesis obsolete. There is no beginning or end, only a

middle. The ideas in this thesis are attempts at solving extraordinarily challenging problems in ma-

chine learning with network data, and, while some problems have been resolved by the work here,

countless problems remain. Even within the smaller subarea of learning using degree information,

significant challenges are still unsolved, and the full potential of using degree information remains

a future goal.

106

Part III

Appendices

APPENDIX A. MISCELLANEOUS EXTENSIONS 107

Appendix A

Miscellaneous Extensions

A.1 Approximating the matrix permanent with matching belief prop-

agation

The permanent is a scalar quantity computed from a matrix and has been an active topic of research

for well over a century. It plays a role in cryptography and statistical physics where it is fundamental

to Ising and dimer models. While the determinant of an n × n matrix can be evaluated exactly in

sub-cubic time, efficient methods for computing the permanent have remained elusive. Since the

permanent is #P-complete, efficient exact evaluations cannot be found in general. The best exact

methods improve over brute force (O(n!)) and include Ryser’s algorithm [Ryser, 1963; Servedio and

Wan, 2005] which requires as many as Θ(n2n) arithmetic operations. Recently, promising fully-

polynomial randomized approximate schemes (FPRAS) have emerged which provide arbitrarily

close approximations. Many of these methods build on initial results by Broder [Dagum and Luby,

1992] who applied Markov chain Monte Carlo (a popular tool in machine learning and statistics)

for sampling perfect matchings to approximate the permanent. Significant progress has produced

an FPRAS that can handle arbitrary n× n matrices with non-negative entries [Jerrum et al., 2004].

The method uses Markov chain Monte Carlo and only requires a polynomial order of samples.

However, while these methods have tight theoretical guarantees, they carry expensive constant

factors, not to mention relatively high polynomial running times that discourage their usage in

practical applications. In particular, we have experienced that the prominent algorithm in [Jerrum

APPENDIX A. MISCELLANEOUS EXTENSIONS 108

et al., 2004] is slower than Ryser’s exact algorithm for any feasible matrix size, and project that it

only becomes faster around n > 30.

It remains to be seen if other approximate inference methods can be brought to bear on the per-

manent. For instance, loopy belief propagation has also recently gained prominence in the machine

learning community. The method is exact for singly-connected networks such as trees. In certain

special loopy graph cases, including graphs with a single loop, bipartite matching graphs [Bayati

et al., 2005] and bipartite multi-matching graphs [Huang and Jebara, 2007], the convergence of BP

has been proven. In more general loopy graphs, loopy BP still maintains some surprising empirical

success. Theoretical understanding of the convergence of loopy BP has recently been improved by

noting certain general conditions for its fixed points and relating them to minima of Bethe free en-

ergy. This chapter proposes belief propagation for computing the permanent and investigates some

theoretical and experimental properties [Huang and Jebara, 2009b].

A.1.1 The permanent as a partition function

Given an n× n non-negative matrix W , the matrix permanent is

∑

π∈Sn

n∏

i=1

Wiπ(i). (A.1)

Here Sn refers to the symmetric group on the set {1, . . . , n}, and can be thought of as the set of all

permutations of the columns of W . To gain some intuition toward the upcoming analysis, we can

think of the matrix W as defining some function f(π;W) over Sn. In particular, the permanent can

be rewritten as

per(W) =
∑

π∈Sn

f(π;W),

where f(π;W) =

n∏

i=1

Wiπ(i).

The output of f is non-negative, so we consider f a density function over the space of all permuta-

tions.

If we think of a permutation as a perfect matching or assignment between a set of n objects

A and another set of n object B, we relax the domain by considering all possible assignments of

imperfect matchings for each item in the sets.

APPENDIX A. MISCELLANEOUS EXTENSIONS 109

Consider the set of assignment variablesX = {x1, . . . , xn}, and the set of assignment variables

Y = {y1, . . . , yn}, such that xi, yj ∈ {1, . . . , n}, ∀i, j. The value of the variable xi is the assign-

ment for the i’th object in A, in other words the value of xi is the object in B being selected (and

vice versa for the variables yj).

φ(xi) =
√
Wixi , φ(yj) =

√
Wyjj ,

ψ(xi, yj) = I(¬(j = xi ⊕ i = yj)).

We square-root the matrix entries because the factor formula multiplies both potentials for the x and

y variables. We use I() to refer to an indicator function such that I(true) = 1 and I(false) = 0.

Then the ψ function outputs zero whenever any pair (xi, yj) have settings that cannot come from

a true permutation (a perfect matching). Specifically, if the i’th object in A is assigned to the j’th

object in B, the j’th object in B must be assigned to the i’th object in A (and vice versa) or else the

density function goes to zero. Given these definitions, we can define the equivalent density function

that subsumes f(π) as follows:

f̂(X,Y) =
∏

i,j

ψ(xi, yj)
∏

k

φ(xk)φ(yk).

This permits us to write the following equivalent formulation of the permanent: per(W) =
∑

X,Y f(X,Y). Finally, if we convert density function f̂ into a valid probability, simply add a

normalization constant to it, producing:

p(X,Y) =
1

Z(W)

∏

i,j

ψ(xi, yj)
∏

k

φ(xk)φ(yk). (A.2)

The normalizer or partition function Z(W) is the sum of f(X,Y) for all possible inputs X,Y .

Therefore, the partition function of this distribution is the matrix permanent of W .

APPENDIX A. MISCELLANEOUS EXTENSIONS 110

Bethe Free Energy To approximate the partition function, we use the Bethe free energy approxi-

mation. The Bethe free energy of our distribution given a belief state b is

FBethe = −
∑

ij

∑

xi,yj

b(xi, yj) lnψ(xi, yj)φ(xi)φ(yj)

+
∑

ij

∑

xi,yj

b(xi, yj) ln b(xi, yj)

−(n− 1)
∑

i

∑

xi

b(xi) ln b(xi)

−(n− 1)
∑

j

∑

yj

b(yj) ln b(yj) (A.3)

The belief state b is a set of pseudo-marginals that are only locally consistent with each other,

but need not necessarily achieve global consistency and do not have to be true marginals of a single

global distribution. Thus, unlike the distributions evaluated by the exact Gibbs free energy, the Bethe

free energy involves pseudo-marginals that do not necessarily agree with a true joint distribution

over the whole state-space. The only constraints pseudo-marginals of our bipartite distribution obey

(in addition to non-negativity) are the linear local constraints:

∑

yj

b(xi, yj) = b(xi),
∑

xi

b(xi, yj) = b(yj), ∀i, j,
∑

xi,yj

b(xi, yj) = 1.

The class of true marginals is a subset of the class of pseudo-marginals. In particular, true marginals

also obey the constraint
∑

X\x p(X) = p(x), which pseudo-marginals are free to violate.

We will use the approximation

per(W) ≈ exp

(
−min

b
FBethe(b)

)
(A.4)

Belief propagation The canonical algorithm for (locally) minimizing the Bethe free energy is

belief propagation. We use the dampened belief propagation described in [Heskes, 2003], which the

author derives as a (not necessarily convex) minimization of Bethe free energy. Belief propagation

is a message passing algorithm that iteratively updates messages between variables that define the

local beliefs. Letmxi(yj) be the message from xi to yj . Then the beliefs are defined by the messages

as follows:

bt(xi, yj) ∝ ψ(xi, yj)φ(xi)φ(yj)
∏

k 6=j
mt
yk

(xi)
∏

`6=i
mt
x`

(yj)

APPENDIX A. MISCELLANEOUS EXTENSIONS 111

bt(xi) ∝ φ(xi)
∏

k

mt
yk

(xi), bt(yj) ∝ φ(yj)
∏

k

mt
xk

(yj) (A.5)

In each iteration, the messages are updated according to the following update formula:

mnew
xi (yj) =

∑

xi

φ(xi)ψ(xi, yj)

∏

k 6=j
mt
yk

(xi)

 (A.6)

Finally, we dampen the messages to encourage a smoother optimization in log-space.

lnmt+1
xi (yj)← lnmt

xi(yj) + ε
[
lnmnew

xi (yj)− lnmt
xi(yj)

]
(A.7)

We use ε as a dampening rate as in [Heskes, 2003] and dampen in log space because the messages

of BP are exponentiated Lagrange multipliers of Bethe optimization [Heskes, 2003; Yedidia et al.,

2005; Yuille, 2002]. We next derive faster updates of the messages (A.6) and the Bethe free energy

(A.3) with some careful algebraic tricks.

Algorithmic Speedups Computing sum-product belief propagation quickly for our distribution is

challenging since any one variable sends a message vector of length n to each of its n neighbors,

so there are 2n3 values to update each iteration. One way to ease the computational load is to

avoid redundant computation. In Equation (A.6), the only factor affected by the value of yj is the ψ

function. Therefore, we can explicitly define the update rules based on the ψ function, which will

allow us to take advantage of the fact that the computation for each setting of yj is similar. When

yj 6= i, we have

moff
xiyj =

∑

xi 6=j
φ(xi)

∏

k 6=j
myk(xi)

=

∑

xi 6=j
φ(xi)m

on
yxixi

∏

k 6=j,k 6=xi
moff
ykxi

 . (A.8)

When yj = i,

mon
xiyj =

φ(xi = j)

∏

k 6=j
myk(xi = j)

=

φ(xi = j)

∏

k 6=j
moff
ykxi

 . (A.9)

APPENDIX A. MISCELLANEOUS EXTENSIONS 112

We have reduced the full message vectors to only two possible values: moff is the message for

when the variables are not matched and mon is for when they are matched. We further simplify the

messages by dividing both values by moff
xiyj . This gives us

moff
xiyj = 1

mon
xiyj =

φ(xi = j)
∏
k 6=jm

off
ykxi∑

xi 6=j φ(xi)mon
yxixi

∏
k 6=j,k 6=xi m

off
ykxi

=
φ(xi = j)∑

k 6=j φ(xi = k)mon
ykxi

(A.10)

We can now define a fast message update rule that only needs to update one value between each

variable.

mt
xiyj ←

1

Z
φ(xi = j)/

∑

k 6=j
φ(xi = k)mt

ykxi
(A.11)

We can rewrite the belief update formulas using these new messages.

b(xi = j, yj = i) ∝ φ(xi)φ(yj)

b(xi 6= j, yj 6= i) ∝ φ(xi)φ(yj)myxixi
mxyj yj

b(xi) ∝ φ(xi)myxixi
,

b(yj) ∝ φ(yj)mxyj yj
(A.12)

With the simplified message updates, each iteration takes O(n) operations per node, resulting in

an algorithm that takes O(n2) operations per iteration. We demonstrate experimentally that the

algorithm converges to within a certain tolerance in a constant number of iterations with respect

to n, so in practice the O(n3) operations it takes to compute Bethe free energy is the asymptotic

bottleneck of our algorithm.

Convergence One important open question about this work is whether or not we can guarantee

convergence. Empirically, by initializing belief propagation to various random points in the feasible

space, we found BP still converged to the same solution. The max-product algorithm is guaranteed

to converge to the correct maximum matching [Bayati et al., 2005; Huang and Jebara, 2007] via

arguments on the unwrapped computation tree of belief propagation. The matching graphical model

does not not meet the sufficient conditions provided in [Heskes, 2006] nor does our distribution fit

APPENDIX A. MISCELLANEOUS EXTENSIONS 113

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

n

s
e

c
o

n
d

s

(a) Running time

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

n

it
e

ra
ti
o

n
s

(b) Iterations

Figure A.1: (a) Average running time until convergence of BP for 5 ≤ n ≤ 50. (b) Number of

iterations.

the criteria for non-convex convergence provided in [Tatikonda and Jordan, 2002] and [Heskes,

2004].

The Bethe approximation of the permanent has been proven to be a minimizer of a convex func-

tion, which makes the true matrix permanent lower bounded by the Bethe approximation [Vontobel,

2010], as is empirically observed in the experiments that follow.

A.1.2 Empirical evaluation of Bethe permanent approximation

In this section we evaluate the performance of this algorithm in terms of running time and accuracy,

and finally we exemplify a possible usage of the approximate permanent as a kernel function.

Running Time We run belief propagation to approximate the permanents of random matrices of

sizes n = [5, 50], recording the total running time and the number of iterations to convergence.

Surprisingly, the number of iterations to convergence initially decreases as n grows, but appears to

APPENDIX A. MISCELLANEOUS EXTENSIONS 114

remain constant beyond n > 10 or so. Running time still increases because the cost of updating

each iteration well subsumes the decrease in iterations to convergence.

In our implementation, we check for convergence by computing the absolute change in all the

messages from the previous iteration, and consider the algorithm converged if the sum of all the

changes of all n3 messages is less than 1e−10. In all cases, the resulting beliefs are consistent with

each other within comparable precision to our convergence threshold. These experiments were run

on a a 2.4 Ghz Intel Core 2 Duo Apple Macintosh running Mac OS X 10.5. The code is in C and

compiled using gcc version 4.0.1. Plots of measured running times and iterations are in Figure A.1.

Table A.1: Normalized Kendall distances between the rankings of random matrices based on their

true permanents and the rankings based on approximate permanents. See Figure A.2 for plots of the

approximations.

n Bethe Sampling Det. Diag.

10 0.00023 0.0248 0.3340 0.0724

8 0.0028 0.1285 0.4995 0.4057

5 0.0115 0.0914 0.4941 0.3834

Accuracy of Approximation We evaluate the accuracy of our algorithm by creating 1000 ran-

dom matrices of sizes 5, 8 and 200 matrices of size 10. The entries of each of these matrices were

randomly drawn from a uniform distribution in the interval [0, 50]. We computed the true perma-

nents of these matrices, then computed approximate permanents using our Bethe approximation.

We also computed an approximate using a naive sampling method, where we sample by choosing

random permutations and storing a cumulative sum of each permutation’s corresponding product.

We sampled for the same amount of actual time our belief propagation algorithm took to converge.

Finally we also computed two weak approximations: the determinant and the scaled product of the

diagonal entries.

In order to be able to compare to the true permanent, we had to limit this analysis to small

matrices. However, since MCMC sampling methods such as in [Jerrum et al., 2004] take O(n10)

time to reach less than some ε error, as matrix size increases, the precision achievable in comparable

time to our algorithm would decrease. We scale the cumulative sum by n!
s , where s is the number

APPENDIX A. MISCELLANEOUS EXTENSIONS 115

0 2 4 6

x 10
16

−1

−0.5

0

0.5

1

1.5

2
x 10

13

True Permanent

D
e

te
rm

in
a

n
t

0 2 4 6

x 10
16

0

0.5

1

1.5

2

2.5
x 10

17

True Permanent

D
ia

g
o

n
a

l
P

ro
d

u
c
t

0 2 4 6

x 10
16

0

1

2

3

4

5

6
x 10

16

True Permanent

S
a

m
p

lin
g

 A
p

p
ro

x
im

a
ti
o

n

0 2 4 6

x 10
16

0

5

10

15
x 10

15

True Permanent

B
e

th
e

 A
p

p
ro

x
im

a
ti
o

n

Figure A.2: Plots of the approximated permanent versus the true permanent using four different

methods. It is important to note that the scale of the y-axis varies from plot to plot. The diagonal

is extremely erratic and the determinant underestimates so much that it is barely visible on the

log scale. Sampling approximates values much closer in absolute distance to the true permanent but

does not provide monotonicity in its approximations. Typically, this is more important than absolute

accuracy. Here we illustrate the results from the n = 8 case. We report results for n = 5 and 10 in

Table A.1.

of samples. This is the ratio of the total possible permutations and the number of samples.

In our experiments, determinants and the products of diagonals are neither accurate nor con-

sistent approximations of the permanent. Sampling, however, is accurate with respect to absolute

distance to the permanent, so for applications where that is most important, it may be best to ap-

ply some sort of sampling method. Our Bethe approximation seems the most consistent. While

the approximations of the permanent are off by a large amount, they seem to be consistently off

by some monotonic function of the true permanent. In many cases, this virtue is more important

than the absolute accuracy, since most applications requiring a matrix permanent likely compare the

APPENDIX A. MISCELLANEOUS EXTENSIONS 116

permanents of various matrices. These results are visualized for n = 8 in Figure A.2.

To measure the monotonicity and consistency of these approximations, we consider the Kendall

distance [Fagin et al., 2003] between the ranking of the random matrices according to the true

permanent and their rankings according to the approximations. Kendall distance is a popular way of

measuring the distance between two permutations. The Kendall distance between two permutations

π1 and π2 is

DKendall(π1, π2) =
n∑

i=1

n∑

j=i+1

I ((π1(i) < π1(j)) ∧ (π2(i) > π2(j))) .

In other words, it is the total number of pairs where π1 and π2 disagree on the ordering. We

normalize the Kendall distance by dividing by n(n−1)
2 , the maximum possible distance between

permutations, so the distance will always be in the range [0, 1]. Table A.1 lists the Kendall distances

between the true permanent ranking and the four approximations. The Kendall distance of the Bethe

approximation is consistently less than that of our sampler.

Approximate Permanent Kernel To illustrate a possible usage of an efficient permanent approx-

imation, we use a recent result [Cuturi, 2007] proving that the permanent of a valid kernel matrix

between two sets of points is also a valid kernel between point sets. Since the permanent is invariant

to permutation, we decided to try a few classification tasks using an approximate permanent kernel.

The permanent kernel is computed by first computing a valid subkernel between a pairs of elements

in two sets, then the permanent of those subkernel evaluations is taken as the kernel value between

the data. Surprisingly, in experiments the kernel matrix produced by our algorithm was a valid

positive definite matrix. This discovery opens up some intriguing questions to be explored later.

We ran a similar experiment to the tests used to evaluate permutation invariant SVMs [Shiv-

aswamy and Jebara, 2006], where we took a the first 200 examples of each of the Cleveland Heart

Disease, Pima Diabetes, and Ionosphere datasets from the UCI repository [Asuncion and Newman,

2007], and randomly permuted the features of each example, then compare the result of training an

SVM on this shuffled data. We also provide the performance of the kernels on the unshuffled data

for comparison. After normalizing the features of the data to the [0, 1]D box, we chose three reason-

able settings of σ for the RBF kernels and cross validated over various settings of the regularization

parameter C. We used RBF kernels between pairs of data as the permanent subkernel. Finally, we

APPENDIX A. MISCELLANEOUS EXTENSIONS 117

Table A.2: Left: Error rates of running SVM using various kernels on the original three UCI

datasets and data where the features are shuffled randomly for each datum. Right: UCI resampled

pendigits data with order of points removed. Error rates of 1-versus-all multi-class SVM using

various kernels.

Kernel Heart Pima Ion.

Original Linear 0.1600 0.2600 0.1640

Orig. RBF σ = 0.3 0.2908 0.3160 0.1240

Orig. RBF σ = 0.5 0.2158 0.3220 0.0760

Orig. RBF σ = 0.7 0.1912 0.2760 0.0960

Shuffled Linear 0.2456 0.3080 0.2640

Shuff. RBF σ = 0.3 0.4742 0.3620 0.4840

Shuff. RBF σ = 0.5 0.3294 0.3140 0.3580

Shuff. RBF σ = 0.7 0.2964 0.3280 0.2700

Bethe σ = 0.3 0.2192 0.2900 0.1000

Bethe σ = 0.5 0.2140 0.2900 0.1380

Bethe σ = 0.7 0.2164 0.2920 0.1380

Kernel PenDigits

Sorted Linear 0.3960

Sorted RBF σ = 0.2 0.4223

Sorted RBF σ = 0.3 0.3407

Sorted RBF σ = 0.5 0.3277

Shuffled Linear 0.7987

Shuff. RBF σ = 0.2 0.9183

Shuff. RBF σ = 0.3 0.9120

Shuff. RBF σ = 0.5 0.8657

Bethe σ = 0.2 0.1463

Bethe σ = 0.3 0.1190

Bethe σ = 0.5 0.1707

APPENDIX A. MISCELLANEOUS EXTENSIONS 118

report the average error over 50 random splits of 150 training points and 50 testing points. Not

surprisingly, the permanent kernel is robust to the shuffling and outperforms the standard kernels.

We also tested the Bethe kernel on the pendigits dataset, also from the UCI repository. The

original pendigits data consists of stylus coordinates of test subjects writing digits. We used the

preprocessed version that has been resampled spatially and temporally. However, we omit the order

information and treat the input as a cloud of unordered points. Since there is a natural spatial

interpretation of this data, so we compare to sorting by distance from origin, a simple method

of handling unordered data. We chose slightly different σ values for the RBF kernels. For this

dataset, there are 10 classes, one for each digit, so we used a one-versus-all strategy for multi-class

classification. Here we averaged over only 10 random splits of 300 training points and 300 testing

points (see Table A.2).

Based on our experiments, the permanent kernel typically does not outperform standard ker-

nels when permutation invariance is not inherently necessary in the data, but when we induce the

necessity of such invariance, its utility becomes clear.

A.1.3 Discussion and future directions

We have described an algorithm based on BP over a specific distribution that allows an efficient

approximation of the #P matrix permanent operation. We write a probability distribution over

matchings and use Bethe free energy to approximate the partition function of this distribution. The

algorithm is significantly faster than sampling methods, but attempts to minimize a function that

approximates the permanent. Therefore it is limited by the quality of the Bethe approximation so it

cannot be run longer to obtain a better approximation like sampling methods can. However, we have

shown that even on small matrices where sampling methods can achieve extremely high accuracy

of approximation, our method is better behaved than sampling, which can approach the exact value

from above or below.

In the future, we can try other methods of approximating the partition function such as gener-

alized belief propagation [Yedidia et al., 2005], which takes advantage of higher order Kikuchi ap-

proximations of free energy. Unfortunately the structure of our graphical model causes higher order

interactions to become expensive quickly, since each variable has exactly N neighbors. Similarly,

the bounds on the partition function in [Wainwright et al., 2002] are based on spanning subtrees

APPENDIX A. MISCELLANEOUS EXTENSIONS 119

in the graph, and again the fully connected bipartite structure makes it difficult to capture the true

behavior of the distribution with trees.

Finally, the positive definiteness of the kernels we computed is surprising, and requires further

analysis. The exact permanent of a valid kernel forms a valid Mercer kernel [Cuturi, 2007] because

it is a sum of positive products, but since our algorithm outputs the results of an iterative approxi-

mation of the permanent, it is not obvious why the resulting output would obey the positive definite

constraints.

A.2 Heuristic extensions for b-matching belief propagation

While belief propagation is guaranteed to converge under certain conditions, a practical implemen-

tation of belief propagation for b-matching benefits from some heuristics. In particular, ideas in this

section focus on heuristic approaches to handle the inputs that do not fit the convergence criteria.

First, we describe a procedure to detect oscillating messages, allowing belief propagation to exit

early if it will never converge. Second, we describe heuristics to handle these outputs of unfinished

belief propagation, which are not feasible solutions for the perfect b-matching problem.

A.2.1 Oscillation detection

Since belief propagation for b-matching, or for any problem, may not converge, a mechanism for

detecting oscillation in the messages useful tool for real implementations of belief propagation on

loopy graphs. In practice, iterative algorithms such as belief propagation are implemented with a

maximum iteration count, which may be quite large. When beliefs oscillate, the algorithm will

certainly run until the maximum iteration is reached, which may waste significant computation if

the oscillation can instead be detected earlier.

Many cases of oscillating belief propagation observed empirically involve repeated nearly exact

states. Since the belief update is deterministic, any repeated state directly implies an infinite loop

of oscillation. For these cases, a we engineer and implement a simple data structure that detects

identical states (within some tolerance).

For each system-wide belief state {α, β}, we compute an integer checksum, and store these

checksum values in a set data structure (e.g., a hash table). At each subsequent iteration, we check

APPENDIX A. MISCELLANEOUS EXTENSIONS 120

if we have previously had a belief state with the same checksum. If we have not, the current state

is certainly not a previous state and belief propagation if not oscillating. If however the checksum

has been seen previously, the current state may be a previously seen state, but not necessarily due

to hash function collisions. When a collision occurs at this level, we escalate to a secondary set that

stores the exact state with a different hash function. Since the secondary set stores the full belief

state, we avoid false-positives at the secondary level. The oscillation detector algorithm is listed in

Algorithm 8.

Algorithm 8 Oscillation detector for belief propagation.
Require: State {α, β}, hash function h({α, β}) 7→ Z, primary set data structure H1 storing inte-

gers, and secondary set H2 storing belief states

1: x← h({α, β})
2: if x is in H1 then

3: if {α, β} is in H2 then

4: return True {Belief propagation is oscillating.}
5: else

6: Insert {α, β} into H2

7: end if

8: else

9: Insert x into H1

10: end if

11: return False

Since we expect a significantly larger set of unique states than repeated states, the two-tier set

structure allows for efficient storage of unique state checksums, each of which is a single O(1)

integer per iteration, and, only when a repeated state is possible, a full O(n) belief state is stored.

Thus, with a good primary hash function, for the O(n) iterations necessary for convergence, this

oscillation detection requires O(n) total additional storage.

If the primary hash function produces too many collisions of hash value, the secondary set may

store too many full belief states, requiring O(n) storage per iteration. Since this should not happen

except when the hash function fails, we simply limit the secondary set to a fixed size and randomly

replace previous states. Given enough repeated states, such a setup eventually detects oscillation,

APPENDIX A. MISCELLANEOUS EXTENSIONS 121

albeit less immediately than if the hash function properly distinguishes unique states.

We implement the oscillation detector with hash tables using quadratic probing, increasing the

underlying array size and rehashing as needed [Cormen et al., 2001]. The hash functions multiply

the belief vectors by 1 × 106, and sum the rounded integer values of these. A more clever hash

function could produce fewer collisions, but we find in practice, this simple hash function produces

sufficiently few collisions. In the secondary hash table, we consider belief states equal if their

vector representations have `1 distance of less than 1 × 10−16, to account for small floating point

inaccuracies. Computing each checksum takes O(n) work at the beginning of each iteration, and

performing the set operations requires O(1) at the primary level and O(n) at the secondary level,

so the oscillation detector adds some minimal extra overhead to belief propagation.

A.2.2 Heuristic to find feasible b-matching without convergence

While finding a feasible b-matching is itself a combinatorial optimization in arbitrary graphs, in

many settings, especially in machine learning applications, the underlying graph is dense, or fully-

connected, in which case constructing a feasible b-matching is significantly easier. This section

provides a heuristic method for completing a b-matching when belief propagation fails to converge.

Empirical evidence indicates that, for many realistic inputs, belief propagation will converge

to valid b-matching states for most of any graph, while a small group of nodes oscillate. Since all

edges are possible in fully connected settings, we consider the quality of the solution generated by

arbitrarily correcting the oscillating nodes.

Since belief propagation at each iteration produces a current estimate connectivity by greedily

connecting each i’th node to its bi highest-belief neighbors, we consider the adjacency matrix of an

unconverged estimate A, which sums to the target degree across rows, but not necessarily across

columns. A key criterion that determines the correctness of the current estimate is the symmetry

of estimated matrix A. In other words, similarly to the pairwise consistency constraints in the b-

matching Markov random field, a node’s beliefs cannot be correct if it connects to nodes that do not

connect back to it. Treating A as a partial directed adjacency, such that Aij represents whether a

directed edge exists from node i to node j, the symmetry of A is equivalently viewed as whether

all directed edges are reciprocated. Let A′ be the adjacency matrix only connecting reciprocated

edges, computable as A′ = A�A>, where the symbol � represents the element-wise, Hadamard

APPENDIX A. MISCELLANEOUS EXTENSIONS 122

product14. All nodes in A′ with unreciprocated edges have deficient degrees, needing additional

edges to reach their target degree. Let S be the index set of all nodes with deficient degree

S =

i

∣∣∣∣∣∣
∑

j

A′ij < bi

 .

A feasible b-matching is constructed by iteratively choosing two nodes from S, connecting them,

and checking if they still belong to set S. Once a node reaches its target degree, it is removed

from S. Natural heuristics for choosing the sequence of edges to add include greedily choosing the

maximum weight candidate, or randomly choosing an edge.

14Alternately, since A is binary, an element-wise logical AND operation is an equivalent computation.

APPENDIX B. ADDITIONAL PROOFS 123

Appendix B

Additional Proofs

B.1 Proof of convergence for bipartite b-matching with belief propa-

gation

Theorem 4.2.1 Given bipartite input graph G = {V,E,w, b}, such that a unique, optimal b-

matching Ê has weight greater by constant ε than any other b-matching, i.e.,

ε ≤ w(Ê)− max
E′∈M,E′ 6=Ê

w(E′),

and all weights are bounded inclusively between wmin and wmax, i.e.,

wmin ≤ w(e) ≤ wmax, ∀e ∈ E,

the maximum belief at iteration t for any node v ∈ V indicates the corresponding neighbors in true

optimum Ê when t = O(|V |).

Proof. Using the unwrapped graph construction for the b-matching graphical model, the theorem

is true if and only if the root node’s connectivity in the maximum weight b-matching of node v’s

unwrapped graph of height h = O(|V |) maps to the true optimal b-matching Ê. The theorem can

then be proved by contradiction. Assume that an unwrapped graph Tv for node v of any height

h ≥ |V |(wmax − wmin)/2ε has a maximum weight b-matching such that root node r connects to

nodes that do not map to the b-matched neighbors of v in optimal b-matching Ê.

Let ÊT be the set of edges in the maximum weight b-matching of Tv, and let ÊG be the reverse-

mapping of true optimal b-matching Ê to unwrapped graph Tv, i.e., the b-matching that consists

APPENDIX B. ADDITIONAL PROOFS 124

of all edges in Tv that map to the edges in Ê. These two b-matchings of Tv observe the following

lemma, which, like each lemma in this proof, is proved later.

Lemma B.1.1. For any two distinct b-matchings ÊT and ÊG on tree Tv, such that the b-matched

edges for the root node differ between ÊT and ÊG, there is an alternating path P on Tv from a leaf

to the root then to another leaf that alternates between edges exclusively in each b-matching. I.e.,

for any adjacent edges ei, ej ∈ P , either e1 ∈ ÊT \ ÊG and e2 ∈ ÊG \ ÊT or vice versa.

Let PT be an alternating path between ÊT and ÊG. Let PG be the path in G composed of the

mapped edges of PT , which obeys the following lemma.

Lemma B.1.2. Let PG be a path of length h on bipartite graph G = {V,E}. Path PG can be

decomposed into a set C of τ cycles such that τ ≥ (2h − 1)/|V |, and a remainder path ρ of odd

length at most |V | − 1.

Let C be the set of cycles comprising PG along with remainder ρ. Because G is bipartite, each

cycle c ∈ C is of even cardinality, and because C comes from alternating path PG, every other

edge in c is in Ê. For each c ∈ C, a b-matching Ec can be constructed by taking optimal matching

Ê and toggling all edges in cycle c. This produces an alternate b-matching that differs from the

optimal b-matching, and thus differs in weight by at least ε. This in turn implies that the edges in c

from optimal b-matching Ê have greater weight than edges in c from ÊT . Combining the bounded

weight differences from each of the τ cycles in C,

w(C ∪ Ê)− w(C \ Ê) ≥ τε ≥ (2h− 1)ε/|V |.

The remainder of PG is a path of odd length, which means one end of the path is an edge from Ê and

the other end of the path is an edge mapped from ÊT . A cycle cρ can be constructed by removing

the end-edge from ÊT and replace it with an edge back to the first node of ρ. This creates cycle cρ

which is missing an edge from ρ and contains an additional edge that was not in ρ. The edges in

cρ similarly alternate between edges in Ê and otherwise, so using the same construction above to

bound the weight difference guarantees that

w(cρ ∩ Ê)− w(cρ \ Ê) ≥ ε.

APPENDIX B. ADDITIONAL PROOFS 125

Accounting for the worst-case condition that the extra edge and the omitted edge are chosen adver-

sarially, the difference in weights in ρ are bounded by

w(ρ ∩ Ê)− w(ρ \ Ê) ≥ ε+ wmin − wmax.

Combining these derived inequalities, edges in PT obey the following bound:

w(PG ∩ Ê)− w(PT ∩ ÊT) ≥ 2hε/|V |+ wmin − wmax.

Finally, the initial assumption stated that h ≥ |V |(wmax − wmin)/2ε, which directly implies

w(PT ∩ ÊG) ≥ w(PT ∩ ÊT).

This produces a contradiction since it implies that a b-matching of greater weight than ÊT , which

is defined as the maximum weight b-matching of Tv, can be produced by toggling the edges of PT .

This contradiction occurs whenever h ≥ O(|V |), and its impossibility proves the theorem using the

equivalence of the unwrapped graph and loopy belief propagation max-marginals.

Proof of Lemma B.1.1. The proof is by construction. It is convenient to construct PG in two halves,

each a path from the root to a leaf. The first half of PT starts with any edge from ÊT that is not

in ÊG, which must exist as given in this lemma. Following the first edge, an alternating edge must

exist from the current node to one of its children because, the parent-edge is in ÊT but not ÊG,

which means for current node v, ÊT must contain edges from v to bv − 1 children and ÊG must

contain edges from v to bv children, leaving at least one edge that is in ÊG that is not in ÊT . The

same argument applies at all even depths in the tree and the reverse argument applies at all odd

depths in the tree, guaranteeing an alternating path from the root to a leaf. The second half of PG

is constructed in the same way, reversing the roles of ÊT and ÊG. Combining the two alternating

paths from the root to leaves yields an alternating path from leaf to leaf.

Proof of Lemma B.1.2. Start with C = ∅. Visit nodes in G in the order of PG. Any time a node is

visited that has been previously visited, remove the cycle from PG, add it to C and continue visiting

nodes in the rest of PG. Note that removing cycles from PG does not break the continuity of the

path since cycles begin and end on the same node. Each cycle is at most length |V |, visiting every

node in G once, and PG is of length 2h− 1 (the path has two nodes at each depth except for the one

root at depth zero). Thus, the fewest number of cycles is (2h − 1)/|V |. The remainder path does

APPENDIX B. ADDITIONAL PROOFS 126

not contain a cycle, and thus cannot visit any node more than once, meaning it is of length at most

|V | − 1. The remainder path is odd because all cycles removed from PG are even, and PG is of odd

length.

B.2 Proof of convergence for b-matching when the linear program-

ming relaxation is tight

This section contains a summary of recent showing the relationship between belief propagation for

b-matching and linear programming relaxation [Bayati et al., To appear]. Only part of the known

results are summarized here, and this section omits additional, analogous results about asynchronous

belief propagation. The linear programming relaxation (LP relaxation) of a maximum weight b-

matching problem defined on graph G = {V,E,w, b} is the following optimization

max
A∈[0,1]n×n

∑

vi,vj∈V
Aijw(vi, vj) s.t.

∑

j

Aij = bvi ,∀vi ∈ V,Aij = Aji, (B.1)

where in the formula above, the nodes in V are indexed by some arbitrary ordering so an equivalent

adjacency matrix formulation is available. In other words, the relaxation of the integer program

definition of the maximum weight b-matching. When all entries of the solution to the optimization

are at the boundaries {0, 1}, the linear programming relaxation is considered tight. Otherwise, some

entries have fractional solutions.

A useful tool for the proof of the convergence on b-matchings with tight LP relaxation is the

construction of a double-cover graph of G, which is a bipartite graph constructed by duplicating

each node in G and connecting each node to its neighbors’ duplicated nodes in the opposite bipar-

tition. Let V1 and V2 be two copies of node-set V . Let mapping orig(v) map any node from V1 or

V2 back to its original node in V . Then Ẽ be the set of edges

Ẽ = {(u, v)|u ∈ V1, v ∈ V2, (orig(u), orig(v)) ∈ E}.

Let the target degrees and weights of the edges be copied respectively into b̃ and w̃. The double-

cover of G is G̃ = {V1 ∪ V2, Ẽ, w̃, b̃}.
The important property of double-cover G̃ is that running belief propagation on G̃ produces

exactly the same updates as running belief propagation on the original graph G. Since the weights

APPENDIX B. ADDITIONAL PROOFS 127

of each edge and the local neighborhood topology at each node is identical in both G and G̃, the

belief update rules operate on exactly the same quantities. Thus, the convergence (and any other)

behavior of belief propagation on G̃ is identical to belief propagation on G. Since the double-cover

is a bipartite graph, and its weights are bounded, it nearly fits the conditions for Theorem 4.2.1.

The final criterion to guarantee belief propagation’s convergence on G̃ (and therefore G) is that the

solution is unique.

Theorem 4.2.2 Assume that the linear programming relaxation of the b-matching problem on G

has a unique, integer solution, and that the weights in G are bounded. Then belief propagation

converges to the optimal solution in O(|V |) iterations.

Proof. Using the double-cover construction described above, the belief propagation on the double-

cover graph G̃ is identical to belief propagation on G. Since G̃ is a bipartite graph with bounded

weights, if b-matching on G̃ has a unique solution that corresponds to the unique solution ofG, then

G̃ fits the conditions of Theorem 4.2.1, and is thus guaranteed to converge to the correct solution.

Consider any b-matching on G̃ with total weight w̃. The following Lemma relates b-matchings

on G̃ with solutions to the LP in Equation (B.1).

Lemma B.2.1. Given any b-matching on G̃ with weight w̃, a feasible solution Ã to the linear

program in Equation (B.1) can be constructed that has weight w̃/2.

If the unique, integral solution of the LP relaxation isw∗, the b-matching constructed by copying

the integral LP relaxation solution onto G̃ has weight 2w∗. According to Lemma B.2.1, all feasible

b-matchings in G̃ have equivalent feasible LP solutions, which means, since the LP solution with

weight w∗ is unique, any other feasible b-matching must have weight less than w∗.

Proof of Lemma B.2.1. Let Ê be the b-matching on G̃. Consider the adjacency matrix of Ê, which,

if nodes in V1 are indexed in the first |V | rows and nodes in V2 are indexed in the last |V | rows, is

block-off-diagonal. Let A be the upper right quadrant of the b-matching adjacency matrix, which is

then structured as the block matrix

 0 A

A> 0

 .

APPENDIX B. ADDITIONAL PROOFS 128

By the b-matching constraints, the rows and columns of A sum to b, but A is not necessarily

symmetric. Construct a feasible solution to the LP relaxation by averaging A and A>, Ã = 1
2(A+

A>). Simple algebra now verifies that Ã has objective value w̃/2 and is a feasible solution to the

objective in Equation (B.1).

In general, it is not trivial to identify whether a given b-matching problem has a tight linear pro-

gramming relaxation. For maximum weight 1-matchings, a necessary and sufficient condition for

the tightness of the LP relaxation is that the line graph of the input is a perfect graph [Jebara, 2009].

However, even though a polynomial time algorithm exists to test for graph perfection [Chudnovsky

et al., 2005], current implementations of the algorithm have a high order polynomial running time

and testing whether a graph is perfect is expensive in practice.

B.3 Proof of collaborative filtering data concentration and corollaries

Theorem 6.2.1 Given that users U = {u1, . . . , um} and rated items V = {v1, . . . , vn} are drawn

iid from arbitrary distributions Du and Dv and that the probability of positive rating by a user for

an item is determined by a function g(ui, vj) 7→ [0, 1], the average of query ratings by each user is

concentrated around the average of his or her training ratings. Formally,

Pr (∆(Xi) ≥ ε) ≤ 2 exp

(
− ε2mim̂i

2(mi + m̂i)

)
, (B.2)

Pr (∆(Xi) ≤ −ε) ≤ 2 exp

(
− ε2mim̂i

2(mi + m̂i)

)
.

Proof of Theorem 6.2.1. McDiarmid’s Inequality bounds the deviation probability of a function

over independent (but not necessarily identical) random variables from its expectation in terms of

its Lipschitz constants [McDiarmid, 1989], which are the maximum change in the function value

induced by changing any input variable. The Lipschitz constants for function ∆ are `j = 1/mi

for 1 ≤ j ≤ mi, and `j = 1/m̂i otherwise. Although the rating random variables are not iden-

tically distributed, they are independently sampled, so we can apply McDiarmid’s Inequality (and

simplify) to obtain

Pr
(
∆(X̄i)− E[∆] ≥ t1

)
≤ exp

(
−2t2mim̂i

mi + m̂i

)
(B.3)

APPENDIX B. ADDITIONAL PROOFS 129

The left-hand side quantity inside the probability contains E[∆], which should be close to zero, but

not exactly zero (if it were zero, Eq. B.3 would be the bound). Since the probability of Xij is a

function of ui and vj , the expectation is

E
[
∆(Ȳi)

]
= E

 1

mi

∑

j|ij∈T
Xij −

1

m̂i

∑

j|ij∈Q
Xij

=
1

mi

∑

j|ij∈T
g(ui, vj)−

1

m̂i

∑

j|∈Q
g(ui, vj)

def
= D(V)

We define the expected deviation above as a function over the items V = {vj |ij ∈ T ∪ Q},
denoted D(V) for brevity. Because this analysis is of one user’s ratings, we can treat the user

input ui to g(ui, vj) as a constant. Since the range of the probability function g(ui, vi) is [0, 1], the

Lipschitz constants for D(V) are `j = 1/mi for 1 ≤ j ≤ mi, and `j = 1/m̂i otherwise. We apply

McDiarmid’s Inequality again.

Pr (D(V)− E[D(V)] ≥ t2) ≤ exp

(
−2t22mim̂i

mi + m̂i

)
.

The expectation of D(V) can be written as the integral

E[D(V)] =

∫
Pr({vj |ij ∈ T ∪Q})D(V)dV.

Since the v’s are iid, the integral decomposes into

E[D(V)] =
1

mi

∑

j|ij∈T

∫
Pr(vj)g(ui, vj)dvj

− 1

m̂i

∑

j|ij∈Q

∫
Pr(vj)g(ui, vj)dvj .

Since each Pr(vj) = Pr(v) for all j, by a change of variables all integrals above are identical. The

expected value E[D(V)] is therefore zero. This leaves a bound on the value of D(V).

Pr (D(V) ≥ t2) exp

(
−2t22mim̂i

mi + m̂i

)

To combine the bounds, we define a quantity to represent the probability of each deviation. First,

let the probability of D(V) exceeding some constant t2 be δ
2 .

δ

2
= exp

(
−2t22mim̂i

mi + m̂i

)

APPENDIX B. ADDITIONAL PROOFS 130

Second, let the probability of ∆(X̄i) exceeding its expectation by more than a constant t also be δ
2 ,

δ

2
= exp

(
−2t2mim̂i

mi + m̂i

)
.

We can write both t and t2 in terms of δ:

t1 = t2 =

√
mi + m̂i

2mim̂i log 2
δ

.

Define ε as the concatenation of deviations t1 and t2,

ε = t1 + t2 = 2

√
mi + m̂i

2mim̂i log 2
δ

.

By construction, the total deviation ε occurs with probability greater than δ. Solving for δ provides

the final bound in Equation B.2. The bound in the other direction follows easily since McDiarmid’s

Inequality is also symmetric.

Although the above analysis refers only to the ratings of the user, the generative model we

describe is symmetric between users and items. Similar analysis therefore applies directly to item

ratings as well.

Corollary B.3.1. Under the same assumptions as Theorem 6.2.1, the average of query ratings for

each item is concentrated around the average of its training ratings.

Additionally, even though Theorem 6.2.1 specifically concerns preference graphs, it can be

easily extended to show the concentration of edge connectivity in general unipartite and bipartite

graphs as follows.

Corollary B.3.2. The concentration bound in Theorem 6.2.1 applies to general graphs; assuming

that edges and non-edges are revealed randomly, nodes are generated iid from some distribution

and the probability of an edge is determined by a function of its vertices, the average connectivity

of unobserved (testing) node-pairs is concentrated around the average connectivity of observable

(training) node-pairs. The probability of deviation is bounded by the same formula as in Theo-

rem 6.2.1.

APPENDIX B. ADDITIONAL PROOFS 131

B.4 Concentration proof for rating features

The concentration proof for rating features uses some similar concepts to the proof of the binary

ratings in the Appendix B.3, but the target quantity being bounded in this section is the deviation

between the empirical average of the training ratings and the expected average of the query ratings.

Theorem 6.3.1 For the ratings of user i, the difference

εik =
1

mi

∑

j|(i,j)∈T
fk(Xij)−

1

m̂i

∑

j|(i,j)∈Q
Ep(Xij |ui,vj)[fk(Xij)]

between the average of fk(X) 7→ [0, 1] over the observed ratings and the average of the expected

value of fk(X) over the query ratings is bounded above by

εik ≤
√

ln 2
δ

2mi
+

√
(mi + m̂i) ln 2

δ

2mim̂i

with probability 1− δ.

Proof of Theorem 6.3.1. The main intuition is that the total deviation between the expected query

average and training average is composed of (1) the deviation between the training average and

the expected training average and (2) the deviation between the expected training average and the

expected query average. Since each component involves independent (though not necessarily iid)

variables, McDiarmid’s inequality [McDiarmid, 1989] can be invoked.

Recall the deviation of interest,

εik =
1

mi

∑

j|(i,j)∈T
fk(xij)−

1

m̂i

∑

j|(i,j)∈Q

∑

xij

fk(xij)p(xij |ui, vj).

Clearly, εik is a function of the independent ratings xij for all j such that (i, j) ∈ T and a function

of the independent item descriptors vj for all j such that (i, j) ∈ Q. The Lipschitz constants of this

function of two sets of independent variables will be examined.

Since the range of function fk is bounded by [0, 1], the deviation function εik is Lipschitz con-

tinuous with constants 1/mi for the training ratings and 1/m̂i for the query item variables. Further-

more, εik is a function of two sets of independent variables allowing the application of McDiarmid’s

inequality (twice). After simplifying, the probability of εik exceeding its expected value by a con-

stant t1 is bounded by

p (εik − Ex,v[εik] ≥ t1) ≤ exp

(
−2mim̂it

2
1

mi + m̂i

)
. (B.4)

APPENDIX B. ADDITIONAL PROOFS 132

Here, we write Ex,v to denote the expectation over the training ratings {xij | (i, j) ∈ T} and all

item descriptors, {vj |(i, j) ∈ T ∪Q}. The expectation E[εik] is not exactly zero but can be shown to

be close to zero with high probability. First, simplify the quantity using the linearity of expectation

to obtain

Ex,v[εik] =
1

mi

∑

j|(i,j)∈T
Ex[fk(xij)]−

1

m̂i

∑

j|(i,j)∈Q
Ev

[∑

x

fk(xij)p(x|ui, vj)
]
.

Rewrite the training expectation directly in terms of the training probabilities
∑

xij
fk(xij)p(xij |ui, vj). Similarly, since all the v variables are sampled iid, rewrite their

expectation explicitly as follows

Ex,v[εik] =
1

mi

∑

j|(i,j)∈T

∑

xij

fk(xij)p(xij |ui, vj)−

1

m̂i

∑

j|(i,j)∈Q

∫

v

∑

xij

fk(xij)p(xij |ui, v)p(v)dv.

Since the query summation no longer depends on the j index, omit the average over the j query

indices,

Ex,v[εik] =
1

mi

∑

j|(i,j)∈T

∑

xij

fk(xij)p(xij |ui, vj)−
∫

v

∑

x

fk(x)p(x|ui, v)p(v)dv. (B.5)

After the simplifications illustrated above, the training sum (the first term in Equation (B.5)) is a

function of the training item descriptors vj for all j where (i, j) ∈ T . This function has Lipschitz

constant 1/mi. Also, the second term in Equation (B.5) is the expectation of the function. Therefore,

McDiarmid’s inequality directly applies to this difference. The probability of E[εik] exceeding a

constant t2 is bounded by

p (E[εik] ≥ t2) ≤ exp
(
−2mit

2
2

)
. (B.6)

A union bound will be used to combine both deviations. Define the right-hand side of Equation

(B.4) as

δ

2
= exp

(
−2mim̂it

2
1

mi + m̂i

)
.

Rewriting the above such that the corresponding deviation t1 is a function of δ yields

t1 =

√
(mi + m̂i) ln 2

δ

2mim̂i
.

APPENDIX B. ADDITIONAL PROOFS 133

Similarly, let the right-hand side of the deviation bound in Equation (B.6) be δ/2. The corresponding

deviation as a function of δ is then

t2 =

√
ln 2

δ

2mi
.

Defining the total deviation as εik = t1 + t2 and applying a union bound completes the proof.

APPENDIX C. ADDITIONAL ALGORITHM DERIVATIONS 134

Appendix C

Additional Algorithm Derivations

C.1 Maximum entropy dual for collaborative filtering model

Since the number of queries can be much larger than the number of users and items, convert the

maximum entropy problem into dual form via the Lagrangian

min
γ,λ∈R+,ζ∈R

max
p

∑

ij∈Q
H(pij(Xij))+

∑

ij∈Q
Xij

pij(Xij) ln p0(Xij)−
∑

ij∈Q
ζij(
∑

Xi

pij(Xij)− 1)

+
∑

k,i

(γ+
ik − γ−ik)

 1

m̂i

∑

j|(i,j)∈Q
EXij [fk(Xij)]− µik

+
∑

k,j

(λ+
jk − λ−jk)

 1

n̂j

∑

i|(i,j)∈Q
EXij [fk(Xij)]− νjk

+(γ+
ik + γ−ik)αi + (λ+

jk + λ−jk)βj .

Above, we define EXij [fk(Xij)] =
∑

Xij
pij(Xij)fk(Xij) and use pij(Xij) as shorthand for the

conditional probability p(Xij |ui, vj). The Lagrange multipliers γ±ik and λ±jk correspond to the pos-

itive and negative absolute value constraints for the user and item averages. The ζij multipliers

correspond to equality constraints that force distributions to normalize.

The probabilities and the normalization multipliers can be solved for analytically resulting in

APPENDIX C. ADDITIONAL ALGORITHM DERIVATIONS 135

the much simpler dual minimization program minγ,λ≥0D where the dual cost function is given by

D =
∑

ik

(γ+
ik + γ−ik)αi − (γ+

ik − γ−ik)µik +

∑

kj

(λ+
jk + λ−jk)βj − (λ+

jk − λ−jk)νjk +
∑

ij∈Q
lnZij .

Here, Zij is the normalizing partition function for the estimated distribution for rating Xij , and is

defined as

Zij =
∑

Xij

p0(Xij) exp

(∑

k

(
γ+
ik − γ−ik
m̂i

+
λ+
jk − λ−jk
n̂j

)
fk(xij)

)
.

Once the Lagrange multipliers are found, the estimated probabilities are normalized Gibbs distribu-

tions of the form

pij(Xij) ∝ p0(Xij) exp

(∑

k

(
γ+
ik − γ−ik
m̂i

+
λ+
jk − λ−jk
n̂j

)
fk(Xij)

)
.

Optimizing the cost function D requires taking partial derivatives which can be written in terms of

normalized probabilities as follows

∂D
∂γ±ik

= αi ∓ µik ±
1

m̂i

∑

j|(i,j)∈Q

∑

Xij

pij(Xij)fk(Xij)

∂D
∂λ±jk

= βj ∓ νjk ±
1

n̂j

∑

i|(i,j)∈Q

∑

Xij

pij(Xij)fk(Xij),

where the ± and ∓ symbols are shorthand to indicate the respective signs for each component of

the gradient for the multipliers of positive and negative constraints.

BIBLIOGRAPHY 136

Bibliography

[Airoldi et al., 2008] E. Airoldi, D. Blei, S. Fienberg, and E. Xing. Mixed membership stochastic

blockmodels. J. Mach. Learn. Res., 9:1981–2014, 2008.

[Albert and Barabási, 2002] R. Albert and A. Barabási. Statistical mechanics of complex networks.

Reviews of Modern Physics, 74(1):47–97, Jan 2002.

[Asuncion and Newman, 2007] A. Asuncion and D. Newman. UCI machine learning repos-

itory. University of California, Irvine, School of Information and Computer Sciences.

http://www.ics.uci.edu/∼mlearn/MLRepository.html, 2007.

[Barabási, 2003] A. Barabási. Linked: The new science of networks. J. Artificial Societies and

Social Simulation, 6(2), 2003.

[Bayati et al., 2005] M. Bayati, D. Shah, and M. Sharma. Maximum weight matching via max-

product belief propagation. In Proc. of the IEEE International Symposium on Information The-

ory, 2005.

[Bayati et al., 2007] M. Bayati, C. Borgs, J. Chayes, and R. Zecchina. Belief-propagation for

weighted b-matchings on arbitrary graphs and its relation to linear programs with integer so-

lutions. CoRR, abs/0709.1190, 2007.

[Bayati et al., 2008] M. Bayati, D. Shah, and M. Sharma. Max-product for maximum weight

matching: Convergence, correctness, and LP duality. IEEE Transactions on Information The-

ory, 54(3):1241–1251, 2008.

BIBLIOGRAPHY 137

[Bayati et al., To appear] M. Bayati, C. Borgs, J. Chayes, and R. Zecchina. Belief-propagation

for weighted b-matchings on arbitrary graphs and its relation to linear programs with integer

solutions. SIAM Journal on Discrete Mathematics, To appear.

[Bell and Koren, 2007] R. Bell and Y. Koren. Lessons from the netflix prize challenge. SIGKDD

Explorations Newsletter, 9(2):75–79, December 2007.

[Belongie et al., 2002] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recog-

nition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24:509–522, 2002.

[Bentley, 1975] J. Bentley. Multidimensional binary search trees used for associative searching.

Commun. ACM, 18:509–517, September 1975.

[Blei et al., 2003] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res.,

3:993–1022, March 2003.

[Boyd and Ellison, 2007] Danah M. Boyd and Nicole B. Ellison. Social network sites: Defini-

tion, history, and scholarship. Journal of Computer-Mediated Communication, 13(1):article 11,

October 2007.

[Breese et al., 1998] J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive al-

gorithms for collaborative filtering. In Proceedings UAI 1998. Morgan Kaufmann, 1998.

[Caetano et al., 2009] T. Caetano, J. McAuley, L. Cheng, Q. Le, and A. Smola. Learning graph

matching. IEEE Trans. Patt. Analysis and Mach. Intel. (PAMI), 31(6):1048–1058, Jun 2009.

[Chang and Blei, 2010] J. Chang and D. Blei. Hierarchical relational models for document net-

works. Annals of Applied Statistics, 4:124–150, 2010.

[Chang et al., 2009] J. Chang, J. Boyd-Graber, and D. Blei. Connections between the lines: aug-

menting social networks with text. In J. Elder IV, F. Fogelman-Soulié, P. Flach, and M. Zaki,

editors, KDD, pages 169–178. ACM, 2009.

[Chechik et al., 2010] G. Chechik, V. Sharma, U. Shalit, and S. Bengio. Large scale online learning

of image similarity through ranking. J. Mach. Learn. Res., 11:1109–1135, March 2010.

BIBLIOGRAPHY 138

[Christakis and Fowler, 2011] N. Christakis and J. Fowler. Connected: The Surprising Power of

Our Social Networks and How They Shape Our Lives. Little, Brown and Company, 2011.

[Chudnovsky et al., 2005] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, and K. Vuskovic.

Recognizing berge graphs. Combinatorica, 25(2):143–186, 2005.

[Conway et al., 1987] J. Conway, N. Sloane, and E. Bannai. Sphere-packings, lattices, and groups.

Springer-Verlag New York, Inc., New York, NY, USA, 1987.

[Cormen et al., 2001] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to algorithms.

McGraw-Hill Book Company, Cambridge, London, 2 edition, 2001.

[Cuturi, 2007] M. Cuturi. Permanents, transportation polytopes and positive definite kernels on

histograms. In International Joint Conference on Artificial Intelligence, IJCAI, 2007.

[Dagum and Luby, 1992] P. Dagum and M. Luby. Approximating the permanent of graphs with

large factors. Theoretical Computer Science, 102(2):283–305, 1992.

[De Francisci Morales et al., 2011] G. De Francisci Morales, A. Gionis, and M. Sozio. Social con-

tent matching in mapreduce. Proc. VLDB Endow., 4:460–469, April 2011.

[Devroye and Wagner, 1979] L. Devroye and T. Wagner. Distribution-free performance bounds for

potential function rules. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979.

[Duan and Pettie, 2010] R. Duan and S. Pettie. Approximating maximum weight matching in near-

linear time. In Proceedings 51st IEEE Symposium on Foundations of Computer Science (FOCS),

2010.

[Dudı́k et al., 2007] M. Dudı́k, D. Blei, and R. Schapire. Hierarchical maximum entropy density

estimation. In Z. Ghahramani, editor, Proceedings of the ICML 2007, pages 249–256. Omnipress,

2007.

[Edmonds, 1965] J Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–

467, 1965.

[Erdos and Renyi, 1959] P. Erdos and A. Renyi. On random graphs i. Publicationes Mathematicae,

1959.

BIBLIOGRAPHY 139

[Fagin et al., 2003] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. In Proceedings

of the ACM-SIAM Symposium on Discrete Algorithms, 2003.

[Fremuth-Paeger and Jungnickel, 1999] C. Fremuth-Paeger and D. Jungnickel. Balanced network

flows. i. a unifying framework for design and analysis of matching algorithms. Networks, 33(1),

1999.

[Frey and Dueck, 2006] B. Frey and D. Dueck. Mixture modeling by affinity propagation. In

Advances in Neural Information Processing Systems 18, pages 379–386. MIT Press, 2006.

[Gabow and Tarjan, 1989] H. Gabow and R. Tarjan. Faster scaling algorithms for network prob-

lems. SIAM J. Comput., 18(5):1013–1036, 1989.

[Gamarnik et al., 2010] D. Gamarnik, D. Shah, and Y. Wei. Belief propagation for min-cost net-

work flow: convergence & correctness. In Proceedings of the Twenty-First Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA ’10, pages 279–292, Philadelphia, PA, USA, 2010.

Society for Industrial and Applied Mathematics.

[Gelman et al., 2003] A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis, Sec-

ond Edition. Chapman & Hall/CRC, July 2003.

[Getoor and Taskar, 2007] L. Getoor and B. Taskar. Introduction to Statistical Relational Learning

(Adaptive Computation and Machine Learning). The MIT Press, 2007.

[Gionis et al., 1999] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via

hashing. In Proceedings of the 25th International Conference on Very Large Data Bases, VLDB

’99, pages 518–529, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[Givoni and Frey, 2009] I. Givoni and B. Frey. A binary variable model for affinity propagation.

Neural Computation, 21(6):1589–1600, 2009.

[Goldberg and Kennedy, 1995] A. Goldberg and R. Kennedy. An efficient cost scaling algorithm

for the assignment problem. Math. Program., pages 153–177, 1995.

[Goldberg et al., 2001] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant

time collaborative filtering algorithm. Inf. Retr., 4(2), 2001.

BIBLIOGRAPHY 140

[Heskes, 2003] T. Heskes. Stable fixed points of loopy belief propagation are local minima of

the Bethe free energy. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural

Information Processing Systems 15, pages 343–350. MIT Press, Cambridge, MA, 2003.

[Heskes, 2004] Tom Heskes. On the uniqueness of loopy belief propagation fixed points. Neural

Comput., 16(11):2379–2413, 2004.

[Heskes, 2006] T. Heskes. Convexity arguments for efficient minimization of the Bethe and

Kikuchi free energies. Journal of Artificial Intelligence Research, 26, 2006.

[Ho et al., 2011] Q. Ho, A. Parikh, L. Song, and E. Xing. Multiscale community blockmodel for

network exploration. In Proceedings of the Fourteenth International Conference on Artificial

Intelligence and Statistics, 2011.

[Hofmann and Puzicha, 1999] T. Hofmann and J. Puzicha. Latent class models for collaborative

filtering. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence,

IJCAI ’99, pages 688–693, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[Huang and Jebara, 2007] B. Huang and T. Jebara. Loopy belief propagation for bipartite maximum

weight b-matching. In M. Meila and X. Shen, editors, Proceedings of the 11th International

Conference on Artificial Intelligence and Statistics, volume 2 of JMLR: W&CP, March 2007.

[Huang and Jebara, 2009a] B. Huang and T. Jebara. Exact graph structure estimation with degree

priors. In M. Wani, M. Kantardzic, V. Palade, L. Kurgan, and Y. Qi, editors, International

Conference on Machine Learning and Applications. IEEE Computer Society, 2009.

[Huang and Jebara, 2009b] Bert Huang and Tony Jebara. Approximating the permanent with belief

propagation. CoRR, abs/0908.1769, 2009.

[Huang and Jebara, 2010] B. Huang and T. Jebara. Collaborative filtering via rating concentration.

In Y. Teh and M. Titterington, editors, Proceedings of the 13th International Conference on

Artificial Intelligence and Statistics, volume 9 of JMLR: W&CP, May 2010.

[Huang and Jebara, 2011] B. Huang and T. Jebara. Fast b-matching via sufficient selection belief

propagation. In Proceedings of the Fourteenth International Conference on Artificial Intelligence

and Statistics, 2011.

BIBLIOGRAPHY 141

[Jebara and Shchogolev, 2006] T. Jebara and V. Shchogolev. B-matching for spectral clustering. In

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, editors, ECML, volume 4212 of Lecture Notes in

Computer Science, pages 679–686. Springer, 2006.

[Jebara et al., 2009] T. Jebara, J. Wang, and S. Chang. Graph construction and b-matching for

semi-supervised learning. In International Conference on Machine Learning, 2009.

[Jebara, 2009] T. Jebara. Map estimation, message passing, and perfect graphs. In Uncertainty in

Artificial Intelligence, 2009.

[Jerrum et al., 2004] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation

algorithm for the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671–697, 2004.

[Joachims et al., 2009] T. Joachims, T. Finley, and C. Yu. Cutting-plane training of structural svms.

Machine Learning, 77(1):27–59, 2009.

[Joachims, 2006] T. Joachims. Training linear SVMs in linear time. In ACM SIG International

Conference On Knowledge Discovery and Data Mining (KDD), pages 217 – 226, 2006.

[Jonker and Volgenant, 1979] R. Jonker and A. Volgenant. A shortest augmenting path algorithm

for dense and sparse linear assignment problems. Computing, 38(4):225–340, 1979.

[Kolmogorov, 2009] V. Kolmogorov. Blossom V: a new implementation of a minimum cost perfect

matching algorithm. Mathematical Programming Computation, 1:43–67, 2009. 10.1007/s12532-

009-0002-8.

[Koo et al., 2007] T. Koo, A. Globerson, X. Carreras, and M. Collins. Structured prediction models

via the matrix-tree theorem. In In EMNLP-CoNLL, 2007.

[Koren et al., 2009] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-

mender systems. Computer, 42(8):30–37, 2009.

[LeCun et al., 2001] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning

applied to document recognition. In Intelligent Signal Processing, pages 306–351. IEEE Press,

2001.

BIBLIOGRAPHY 142

[Leskovec et al., 2010] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-

mani. Kronecker graphs: An approach to modeling networks. Journal of Machine Learning

Research, 11:985–1042, 2010.

[Liben-Nowell and Kleinberg, 2007] D. Liben-Nowell and J. Kleinberg. The link-prediction prob-

lem for social networks. J. Am. Soc. Inf. Sci. Technol., 58:1019–1031, May 2007.

[Lim and Teh, 2007] Y. Lim and Y. Teh. Variational bayesian approach to movie rating prediction.

In Proceedings of KDD Cup and Workshop, 2007.

[Maneewongvatana and Mount, 1999] S. Maneewongvatana and D. Mount. Analysis of approxi-

mate nearest neighbor searching with clustered point sets. CoRR, cs.CG/9901013, 1999.

[Marlin et al., 2007] B. Marlin, R. Zemel, S. Roweis, and M. Slaney. Collaborative filtering and

the missing at random assumption. In Proceedings of UAI 2007, 2007.

[Marlin, 2004] B. Marlin. Modeling user rating profiles for collaborative filtering. In Advances in

Neural Information Processing Systems 17. MIT Press, 2004.

[Massa and Avesani, 2005] P. Massa and P. Avesani. Controversial users demand local trust met-

rics: An experimental study on epinions.com community. In M. Veloso and S. Kambhampati,

editors, AAAI. MIT Press, 2005.

[Matusov et al., 2004] E. Matusov, R. Zens, and H. Ney. Symmetric word alignments for statistical

machine translation. In COLING ’04: Proceedings of the 20th international conference on Com-

putational Linguistics, page 219, Morristown, NJ, USA, 2004. Association for Computational

Linguistics.

[McAuley and Caetano, 2009] J. McAuley and T. Caetano. Faster algorithms for max-product

message-passing. CoRR, abs/0910.3301, 2009.

[McAuley and Caetano, 2010] J. McAuley and T. Caetano. Exploiting data-independence for fast

belief-propagation. In J. Fürnkranz and T. Joachims, editors, ICML, pages 767–774. Omnipress,

2010.

[McDiarmid, 1989] C. McDiarmid. On the method of bounded differences. Surveys in Combina-

torics, pages 148–188, 1989.

BIBLIOGRAPHY 143

[Mehta et al., 2007] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and generalized

online matching. J. ACM, 54(5), 2007.

[Miller et al., 2009] K. Miller, T. Griffiths, and M. Jordan. Nonparametric latent feature models for

link prediction. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, editors,

Advances in Neural Information Processing Systems 22, pages 1276–1284. MIT Press, 2009.

[Montanari et al., 2009] A. Montanari, R. Keshavan, and S. Oh. Matrix completion from a few

entries. In ISIT 2009. IEEE International Symposium on Information Theory, 2009.

[Morris and Frey, 2003] Q. Morris and B. Frey. Denoising and untangling graphs using degree

priors. In Advances in Neural Information Processing Systems 16. MIT Press, 2003.

[Munkres, 1957] J. Munkres. Algorithms for the Assignment and Transportation Problems. Journal

of the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

[Newman et al., 2001] M. Newman, S. Strogatz, and D. Watts. Random graphs with arbitrary de-

gree distributions and their applications. Physical Review E, 64, 2001.

[Pearl, 1988] J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible infer-

ence. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[Ratliff et al., 2007] N. Ratliff, J. Bagnell, and M. Zinkevich. (online) subgradient methods for

structured prediction. In Artificial Intelligence and Statistics, volume 2 of JMLR: W&CP, 2007.

[Rennie and Srebro, 2005] J. Rennie and N. Srebro. Fast maximum margin matrix factorization for

collaborative prediction. In L. De Raedt and S. Wrobel, editors, Machine Learning, Proceed-

ings of the Twenty-Second International Conference (ICML 2005), Bonn, Germany, August 7-11,

2005, volume 119 of ACM International Conference Proceeding Series, pages 713–719. ACM,

2005.

[Rennie, 2007] J. Rennie. Extracting information from informal communication. PhD thesis, Mas-

sachusetts Institute of Technology, Cambridge, MA, USA, 2007.

[Robins et al., 1999] G. Robins, P. Pattison, and S. Wasserman. Logit models and logistic regres-

sions for social networks, iii: Valued relations. Psychometrika, 64:371–394, 1999.

BIBLIOGRAPHY 144

[Robins et al., 2006] G. Robins, T. Snijders, P. Wang, and M. Handcock. Recent developments in

exponential random graph (p*) models for social networks. Social Networks, 29:192–215, 2006.

[Robins et al., 2007] G. Robins, P. Pattison, Y. Kalish, and D. Lusher. An introduction to exponen-

tial random graph (p*) models for social networks. Social Networks, 29(2):173–191, 2007.

[Ryser, 1963] H. Ryser. Combinatorial mathematics. The Carus Mathematical Monographs, 1963.

[Salakhutdinov and Mnih, 2008a] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix

factorization using Markov chain Monte Carlo. In Proceedings of the International Conference

on Machine Learning, volume 25, 2008.

[Salakhutdinov and Mnih, 2008b] R. Salakhutdinov and A. Mnih. Probabilistic matrix factoriza-

tion. In Advances in Neural Information Processing Systems, volume 20, 2008.

[Salez and Shah, 2009] J. Salez and D. Shah. Optimality of belief propagation for random assign-

ment problem. In C. Mathieu, editor, SODA, pages 187–196. SIAM, 2009.

[Sanghavi et al., 2007] S. Sanghavi, D. Malioutov, and A. Willsky. Linear programming analysis of

loopy belief propagation for weighted matching. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis,

editors, Advances in Neural Information Processing Systems 20, pages 1273–1280, Cambridge,

MA, 2007. MIT Press.

[Sankowski, 2009] P. Sankowski. Maximum weight bipartite matching in matrix multiplication

time. Theor. Comput. Sci., 410(44):4480–4488, 2009.

[Servedio and Wan, 2005] R. Servedio and A. Wan. Computing sparse permanents faster. Inf.

Process. Lett., 96(3):89–92, 2005.

[Shalev-Shwartz et al., 2007] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal esti-

mated sub-gradient solver for SVM. In Proceedings of the 24th International Conference on

Machine Learning, ICML ’07, pages 807–814, New York, NY, USA, 2007. ACM.

[Shalev-Shwartz et al., To appear] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos:

Primal estimated sub-gradient solver for SVM. Mathematical Programming, To appear.

BIBLIOGRAPHY 145

[Shaw and Jebara, 2007] B. Shaw and T. Jebara. Minimum volume embedding. In M. Meila and

X. Shen, editors, Proceedings of the 11th International Conference on Artificial Intelligence and

Statistics, volume 2 of JMLR: W&CP, March 2007.

[Shaw and Jebara, 2009] B. Shaw and T. Jebara. Structure preserving embedding. In A. Danyluk,

L. Bottou, and M. Littman, editors, International Conference on Machine Learning, volume 382

of ACM International Conference Proceeding Series. ACM, 2009.

[Shaw et al., To appear] B. Shaw, B. Huang, and T. Jebara. Learning a distance metric from a

network. In Advances in Neural Information Processing Systems 25, To appear.

[Shivaswamy and Jebara, 2006] P. Shivaswamy and T. Jebara. Permutation invariant SVMs. In

International Conference on Machine Learning, ICML, 2006.

[Srebro et al., 2004] N. Srebro, J. Rennie, and T. Jaakkola. Maximum-margin matrix factorization.

In Advances in Neural Information Processing Systems 17. MIT Press, 2004.

[Tarlow et al., 2010] D. Tarlow, I. Givoni, and R. Zemel. Hop-map: Efficient message passing with

high order potentials. Journal of Machine Learning Research - Proceedings Track, 9:812–819,

2010.

[Tatikonda and Jordan, 2002] S. Tatikonda and M. Jordan. Loopy belief propagation and gibbs

measures. In In Uncertainty in Artificial Intelligence, pages 493–500. Morgan Kaufmann, 2002.

[Traud et al., 2011] A. Traud, P. Mucha, and M. Porter. Social structure of facebook networks.

CoRR, abs/1102.2166, 2011.

[Ungar and Foster, 1998] L Ungar and D Foster. Clustering methods for collaborative filtering. In

Proceedings of the Workshop on Recommendation Systems. AAAI Press, Menlo Park California,

1998.

[Valiant, 1979] L. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,

8:189–201, 1979.

[Vontobel, 2010] P. Vontobel. The Bethe permanent of a non-negative matrix. In Proc. 48th Aller-

ton Conf. on Communications, Control, and Computing, 2010.

BIBLIOGRAPHY 146

[Wainwright and Jordan, 2008] M. Wainwright and M. Jordan. Graphical Models, Exponential

Families, and Variational Inference. Now Publishers Inc., Hanover, MA, USA, 2008.

[Wainwright et al., 2002] M. Wainwright, T. Jaakkola, and A. Willsky. A new class of upper bounds

on the log partition function. In A. Darwiche and N. Friedman, editors, Proceedings of the 18th

Conference in Uncertainty in Artificial Intelligence, pages 536–543. Morgan Kaufmann, 2002.

[Wang et al., 2008] J. Wang, T. Jebara, and S. Chang. Graph transduction via alternating minimiza-

tion. In Proceedings of the 25th international conference on Machine learning, ICML ’08, pages

1144–1151, New York, NY, USA, 2008. ACM.

[Weimer et al., 2007] M. Weimer, A. Karatzoglou, Q. Le, and A. Smola. COFI RANK - maxi-

mum margin matrix factorization for collaborative ranking. In Advances in Neural Information

Processing Systems 20, 2007.

[Weinberger and Saul, 2009] K. Weinberger and L. Saul. Distance metric learning for large margin

nearest neighbor classification. Journal of Machine Learning Research, 10:207–244, 2009.

[Weiss, 2000] Y. Weiss. Correctness of local probability propagation in graphical models with

loops. Neural Computation, 12(1):1–41, 2000.

[Xing et al., 2010] E. Xing, W. Fu, and L. Song. A state-space mixed membership blockmodel for

dynamic network tomograph. Annals of Applied Statistics, 4(2):535–566, 2010.

[Yedidia et al., 2005] J. Yedidia, W. Freeman, and Y. Weiss. Constructing free-energy approxima-

tions and generalized belief propagation algorithms. IEEE Transactions on Information Theory,

51(7), 2005.

[Yuille, 2002] A. Yuille. Cccp algorithms to minimize the Bethe and Kikuchi free energies: Con-

vergent alternatives to belief propagation. Neural Computation, 14(7):1691–1722, 2002.

[Zhou et al., 2004] D. Zhou, O. Bousquet, T. Navin Lal, J. Weston, and B. Schölkopf. Learning

with local and global consistency. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in

Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.

BIBLIOGRAPHY 147

[Zhu et al., 1997] C. Zhu, R. Byrd, P. Lu, and J. Nocedal. Algorithm 78: L-BFGS-B: Fortran

subroutines for large-scale bound constrained optimization. ACM Transactions on Mathematical

Software, 23(4):550–560, 1997.

[Zhu et al., 2003] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian

fields and harmonic functions. In International Conference on Machine Learning, pages 912–

919, 2003.

[Ziegler et al., 2005] C. Ziegler, S. McNee, J. Konstan, and G. Lausen. Improving recommendation

lists through topic diversification. In A. Ellis and T. Hagino, editors, WWW. ACM, 2005.

	1 Introduction
	1.1 Thesis contributions
	1.2 Organization

	I Degree-Based Subgraph Estimation
	2 Link Prediction
	2.1 Problem formulations for link prediction
	2.2 Prediction methods
	2.2.1 Graph distance methods
	2.2.2 Structured prediction approaches
	2.2.3 Latent space models
	2.2.4 Exponential random graph models
	2.2.5 Other methods

	2.3 Link prediction summary

	3 Degree-Based Subgraph Estimation
	3.1 Maximum weight matching and its generalizations
	3.1.1 Degree-based matching
	3.1.2 Representing subgraph optimizations with concave degree preferences
	3.1.3 Degree-based matching as maximum likelihood estimation

	3.2 Summary of degree-based subgraph estimation

	4 Belief Propagation for b-Matching
	4.1 Belief propagation
	4.1.1 Related work
	4.1.2 Maximum weight matching solvers
	4.1.3 The max-product algorithm

	4.2 Fast belief propagation for maximum weight b-matching
	4.2.1 Convergence analysis
	4.2.2 Message simplification
	4.2.3 Fast message updates via sufficient selection
	4.2.4 Parallel computation
	4.2.5 Empirical evaluation of sufficient-selection belief propagation for b-matching

	4.3 Summary of fast belief propagation for maximum weight b-matching

	II Applications
	5 Graph-Based Machine Learning
	5.1 Robustness of k-nearest neighbors vs. b-matching in high dimensional data
	5.2 Robustness of b-matching against concept drift via translation
	5.3 Graph construction for semi-supervised learning
	5.4 Summary of graph-based classification

	6 Collaborative Filtering
	6.1 Prior approaches for collaborative filtering
	6.2 Collaborative filtering as graph estimation
	6.2.1 Concentration bound
	6.2.2 Edge weights
	6.2.3 Results

	6.3 Collaborative filtering via rating concentration
	6.3.1 Algorithm description
	6.3.2 Experimental evaluation of collaborative filtering via rating concentration
	6.3.3 Discussion

	6.4 Summary of degree-based approaches to collaborative filtering

	7 Learning from and Predicting Networks
	7.1 Exact degree priors in synthetic scale-free networks
	7.2 Structured metric learning approaches for graph prediction
	7.3 Degree distributional metric learning
	7.3.1 Structured prediction learning
	7.3.2 Stochastic large-scale learning

	7.4 Structure preserving metric learning
	7.4.1 Stochastic SPML with k-nearest neighbor

	7.5 Experiments with DDML and SPML
	7.6 Discussion of learning from and predicting networks

	8 Conclusions and Discussion
	8.1 Contributions
	8.2 Open questions and future work
	8.3 Discussion

	III Appendices
	A Miscellaneous Extensions
	A.1 Approximating the matrix permanent with matching belief propagation
	A.1.1 The permanent as a partition function
	A.1.2 Empirical evaluation of Bethe permanent approximation
	A.1.3 Discussion and future directions

	A.2 Heuristic extensions for b-matching belief propagation
	A.2.1 Oscillation detection
	A.2.2 Heuristic to find feasible b-matching without convergence

	B Additional Proofs
	B.1 Proof of convergence for bipartite b-matching with belief propagation
	B.2 Proof of convergence for b-matching when the linear programming relaxation is tight
	B.3 Proof of collaborative filtering data concentration and corollaries
	B.4 Concentration proof for rating features

	C Additional Algorithm Derivations
	C.1 Maximum entropy dual for collaborative filtering model

	Bibliography

