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Introduction. Real-world networks often consist of
nodes with informative attributes as well as links. To
properly model these networks, it is necessary to learn
how attributes of the nodes relate to the connectiv-
ity structure. Metric learning is a natural framework
for transforming the raw node features to match the
structural properties of a graph. Traditional met-
ric learning algorithms primarily model the similarity
between nodes and not structural properties, such as
degree distributions. Degree distributions play a cen-
tral role in graph structure analysis [1]. The degree
distribution for some nodes may be non-stationary
and depend on their attributes, particularly if some
attributes naturally relate to connectedness. For ex-
ample, in the LinkedIn network, an individual whose
job area is “Software Sales” is likely to have more
connections than an individual whose area is “Soft-
ware Programmer”. We propose degree distributional

metric learning (DDML), a method for simultane-
ously learning a metric and degree preference func-
tions such that the combination captures the struc-
ture of the input graph and allows for more accurate
link prediction from only node features.

Algorithm Description. The learning algorithm
is given training data consisting of N pairs of node
feature vectors and corresponding adjacency matri-
ces {(X1,A1), . . . , (XN ,AN )}, where each row i of
Xk ∈ R

nk×D represents one of nk D-dimensional
real-valued node feature vectors denoted by (xk

i )⊤,
and each Ak ∈ B

nk×nk is a directed adjacency ma-
trix. DDML then outputs a similarity function f :
{R

D, RD} 7→ R that takes two vectors as input and
outputs a real value, and a degree preference func-
tion g : {R

D, N} 7→ R takes a node descriptor vector
and a candidate degree d and outputs a real valued
preference score for that node having degree d.

Matrices M ∈ R
D×D, and T,S ∈ R

n×D, where n =
maxk nk, define a degree distributional metric. The
similarity function is 1 f(xi,xj ;M) = x⊤

i Mxj . Using
the notation that sc is the 1×D dimensional c’th row
of S, the degree preference function is g(xk

i , b;S) =
∑nk−b

c=1
scx

k
i . A graph is predicted by maximiz-

1If M is positive semi-definite (PSD), it can be used to
describe a metric. Omitting the PSD requirement allows the
similarity function to be asymmetric, which allows representa-
tion of directed graphs. Nevertheless, we always refer to the
algorithm as degree distributional metric learning.

ing F (A|Xk,M,S,T) =
∑

ij|Aij=1
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∑
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∑
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∑
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optimization is computable by a reduction to a max-
imum weight b-matching [3]. Using normalized Ham-
ming distance ∆(Ak, Ã) =

∑

ij|Ak
ij 6=Ãij

1/(n2

k − nk),

i.e., the proportion of misclassified edges, as a loss
function and the Frobenius ℓ2-norm of the parameter
matrices as a regularizer, learning is done by solving

min
M,S,T,ξ≥0

1

2
(||M||Fro + ||S||Fro + ||T||Fro) + Cξ, s.t.

1

N

N
∑

k=1

[

F (Ak|Xk,M,S,T) − F (Ãk|Xk,M,S,T)
]

≥
1

N

N
∑

k=1

∆(Ak, Ã) − ξ, ∀{Ã1, . . . , Ãn}. (1)

The optimization is a quadratic program with ex-
ponentially many linear constraints, and is of the
same form as a structural support vector machine

(SVM) [4]. Thus, the established cutting-plane ap-
proach (and efficiency guarantees) can be applied.
The solution to (1) is found by maintaining a work-
ing set of constraints, solving for the optimal M,
S, and T, then adding the worst-violated constraint
by the current solution and repeating. The worst
violated constraint is found by a separation oracle,
Ãk = argmaxA F (A|X,M,S,T) + ∆(Ak,A). This
is computed by adding the decomposed loss to the
primary edge weights of the b-matching input.

Experiments. We consider comparisons against
two baseline models of varying richness. The sim-
plest model classifies node-pairs using a support
vector machine (SVM). The SVM receives training
data as pairs of inputs and outputs (binary labels)
{[xk

i (1)xk
j (1), . . . ,xk

i (D)xk
j (D)], (Ak)ij}, and then es-

timates a weight vector w. The second model, M-
learning, learns a linear transform matrix M without
any degree information, predicting the presence an
edge if xiMxj is a positive quantity. We learn M by
the same optimization as DDML except with the S

and T matrices fixed at zero. The SVM, M-learning
and DDML approaches bring increasing model rich-
ness. The SVM approach is equivalent to learning an
M matrix that is only nonzero along the diagonal.
Similarly, M-learning is equivalent to DDML with
no degree distribution information.
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Figure 1: True and Learned M matrices from Syn-
thetic Tests. For each sampling scheme, the models
that do not learn the active sampling parameters in-
adequately model the feature interactions.

Synthetic Graphs. We generate data and graphs
from three sampling schemes. For each scheme, we
train on five graphs and test on five new graphs. To
generate graphs, we randomly sample 50 data vectors
from R

4 uniformly from [0, 1]4 and predict different
M, S and T matrices. First, we use a diagonal M

matrix and zero degree preference. Second, we use
a full M matrix and zero degree preference. Third,
we generate a random M matrix and random S and
T matrices. All methods perform well when data is
generated from their corresponding models, but the
baselines fail on graphs from the richer generative
processes. E.g., in the third scheme, only DDML
predicts near-perfectly. See Fig. 1.

Wikipedia Lists. We conducted an experiment to
predict the link structure between Wikipedia articles
in predefined categories using bag-of-words features
for each article. For each category, we collected the
count of word-occurrences in articles listed on the
main category page and directed links between the
articles within each category. We squash the word
counts with the square root function and reduce di-
mensionality to 20 by applying non-negative matrix
factorization [2]. We train the algorithms on cat-
egories “linear algebra topics”, and “mathematical
functions”, and test on “computer science topics”,
“data structures”, and “graph theory topics”. DDML
predictions produce an average F1-score of 0.1255,
M-learning scores 0.0930, and SVM scores 0.0534 and
a fully-connected graph scores 0.0561.

We also compared the ranking of edges obtained by
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Figure 2: ROC Curves for Wikipedia Link Predic-
tion. These plots compare the true and false positive
rates of the rankings returned by the three learning
algorithms for predicting the edges of held out graphs.

the three models. Since the DDML model is richer
than a simple ranking of edges, we greedily select
edges in order according to the gain in current over-
all weight, which takes into account the edge weight
itself as well as the reward for the change in degree
induced by adding each edge. For M-learning and
SVM, the ranking is the ordering of prediction val-
ues. The receiver order statistics (ROC) curves for
each of the held-out test graphs are in Fig. 2.

Discussion. Metric learning is a natural framework
for modeling graph data containing both connectivity
information and node attributes. We have demon-
strated that it is insufficient to learn only a metric
that defines node similarity merely pairwise. To prop-
erly model how nodes connect, it is necessary to es-
timate both a metric and a set of degree preference
functions which allow the model to better match the
structural properties of real networks.
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