Fast b-Matching via Sufficient Selection Belief Propagation

Bert Huang and Tony Jebara

bert@cs.columbia.edu, jebara@cs.columbia.edu Computer Science Department, Columbia University

Summary

Maximum weight perfect b-matching (b-matching) is useful for resource allocation, semi-supervised learning, spectral clustering, graph embedding, and manifold learning.

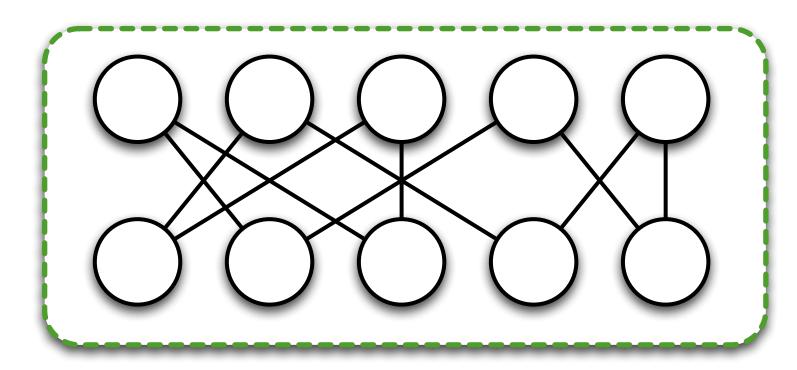
Posing b-matching as probabilistic inference yields a lightweight belief propagation (BP) solver: $O(N^3)$ time and $O(N^2)$ space for a <u>dense</u> graph of *N* nodes (Huang & Jebara 2007).

We provide two speedups that significantly improve the scalability of BP for b-matching.

Space: $O(N^2) \rightarrow O(N)$. We unroll recursion, and characterize beliefs with two $N \times 1$ vectors instead of $N \times N$ matrix.

Time: $O(N^3) \rightarrow O(N^{2.5})$. We compute message updates via *sufficient* selection, based on faster BP by McAuley & Caetano (2010).

Maximum Weight Perfect b-Matching



Given sets of node descriptors $\{x_1, \dots, x_m\}$ and $\{x_{m+1}, \dots, x_{m+n}\}$, target degrees $\{b_1, \dots, b_{m+n}\}$, and weight function W, compute

argmax
$$\sum_{i=1}^{m} \sum_{j=m+1}^{m+n} A_{ij} W(x_i, x_j)$$
 s.t.
$$\sum_{i=1}^{m+n} A_{ij} = b_i, \forall i, \qquad A_{ij} = A_{ji}, \forall (i, j)$$

W is any function, e.g., linear kernel, or arbitrary weights, and N = m + n.

Belief Propagation for b-Matching

Writing b-matching objective as factorized probability distribution, standard loopy BP is guaranteed to converge to true optimal setting in O(N) iterations when the LP-relaxation is integral (Huang & Jebara 2007; Sanghavi et al. 2008).

The simplified belief update rule uses the *selection* operation, denoted

$$\sigma_k(S) = s \in S$$
 where $|\{t \in S | t \geq s\}| = k$.

The belief update rule is

update rule is
$$B_{ij}^t = W(x_i, x_j) - \sigma_{b_j}(\{B_{jk}^{t-1} | k \neq i\}).$$

$$\vdots$$

$$B_{N}^t$$

BP stores $N \times N$ matrix of beliefs: $O(N^2)$ additional space.

Using classical selection algorithms, each row takes O(N) to update, $O(N^2)$ per iteration, $O(N^3)$ total work until convergence.

Acknowledgements/Notes

This work was supported by DHS Contract N66001-09-C-0080—"Privacy Preserving Sharing of Network Trace Data (PPSNTD) Program"

Thanks to T. Caetano and B. Shaw for helpful discussions.

Code is available at http://www.cs.columbia.edu/~bert/code/bmatching/

Bert is graduating this summer. Contact him with employment and collaboration opportunities: bert@cs.columbia.edu, http://berthuang.com

Saving Space by Unrolling Recursion

The selection operation for each update returns one of two values:

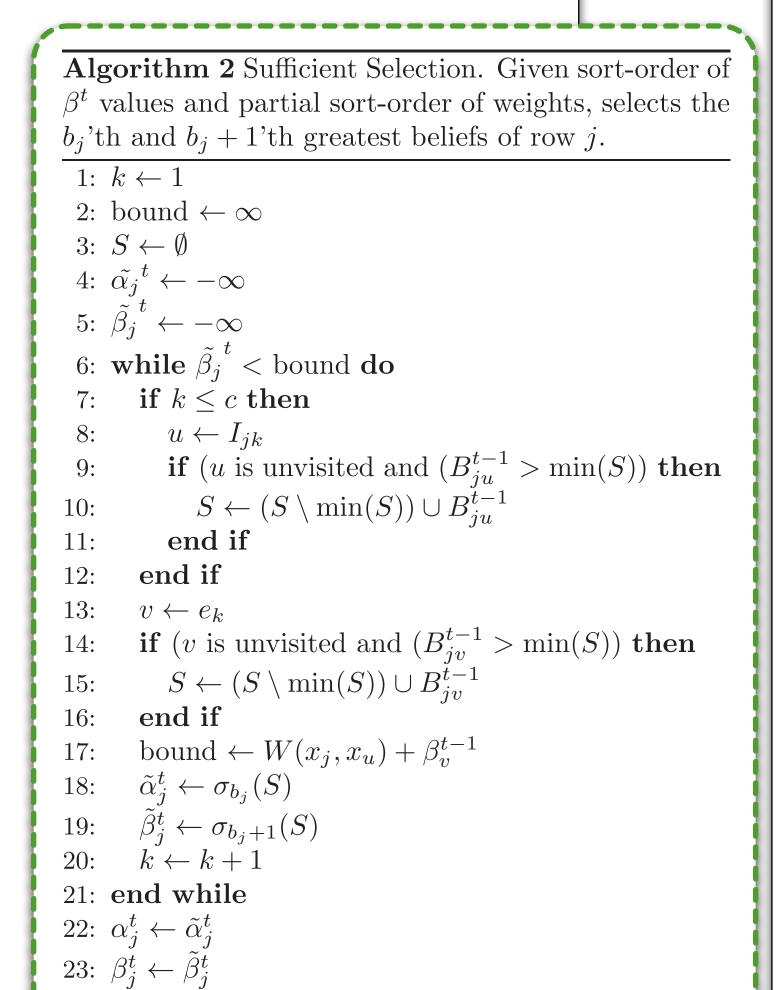
$$\sigma_{b_j}(\{B_{jk}^{t-1}|k\neq i\})\in \{\sigma_{b_j}(\{B_{jk}^{t-1}|k\}),\sigma_{b_j+1}(\{B_{jk}^{t-1}|k\})\}.$$

We name these two values $\alpha_{i}^{t} = -\sigma_{b_{i}}(\{B_{ik}^{t-1}|k\}), \quad \beta_{i}^{t} = -\sigma_{b_{i}+1}(\{B_{ik}^{t-1}|k\}).$

The belief lookup rule is then $B_{ij}^t = W(x_i, x_j) + \begin{cases} \alpha_j^t & \text{if } A_{ji}^t \neq 1 \\ \beta_i^t & \text{otherwise.} \end{cases}$

The $\vec{\alpha}$, $\vec{\beta}$ beliefs and the current estimate for **A** can be computed by looking at one row at a time, and the full **B** matrix need never be stored in memory.

Algorithm 1 Belief Propagation for b-Matching. Computes the adjacency matrix of the maximum weight b-matching. 1: $\alpha_i^0, \beta_i^0 \leftarrow 0, \forall j$ 2: $\mathbf{A}^0 \leftarrow [0]$ 4: while not converged do for all $j \in \{1, ..., m+n\}$ do $A_{ik}^t \leftarrow 0, \forall k$ $\alpha_j^t \leftarrow \sigma_{b_j}(\{B_{jk}^{t-1}|k\}) \text{ {Algorithm 2}}$ $\beta_j^t \leftarrow \sigma_{b_j+1}(\{B_{jk}^{t-1}|k\})$ for all $\{k|B_{ik}^{t-1} \geq \alpha_i^t\}$ do end for delete \mathbf{A}^{t-1} , α^{t-1} and β^{t-1} from memory 15: end while



Saving Time with Sufficient Selection

Each belief row is an element-wise sum of two vectors $W(x_i, \cdot)$ and $\vec{\alpha}$ or $\vec{\beta}$

McAuley & Caetano (2010) exploited similar structure by pre-sorting each vector, computing *maximization* in expected $O(\sqrt{N})$ time

We compute *b-selection*, and keep a sorted cache of the top weights

Sort $\vec{\beta}$ messages at beginning of each iteration

Sufficient selection: examine entries corresponding to greatest W and β in order. Stop looking at values after seeing *b* greater than bound on remaining entries:

greatest unseen entry \leq (least W so far) + (least β so far)

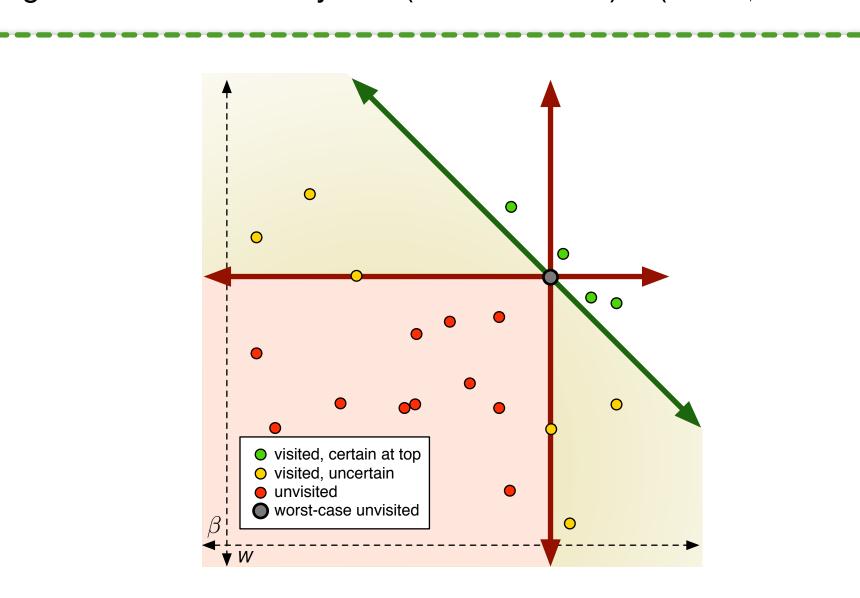


Figure 1. Visualization of sufficient selection. Selecting $W + \beta$, we can stop once b points are green. Red points are unvisited, and in the worst case are located at the gray dot.

Theorem 1. Considering the element-wise sum of two real-valued vectors of length N with independently random sort orders, the expected number of elements that must be compared to compute the selection of the b'th greatest entry $\sigma_b(\{w_i + \beta_i | i\})$ is $O(\sqrt{bN})$.

Experiments: Synthetic Data

Synthetic Gaussian data: 20 dimensional, zero-mean, negative Euclidean weights

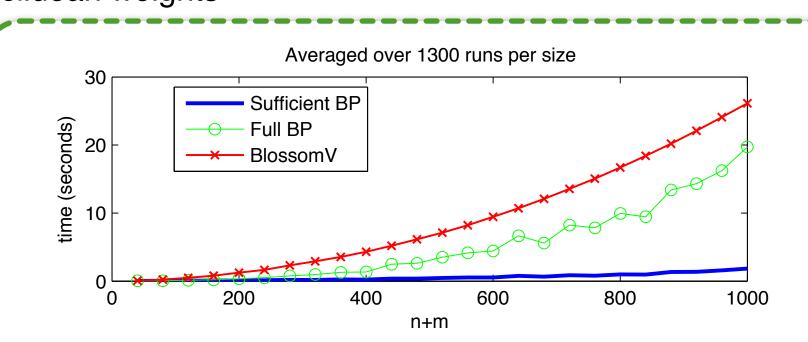
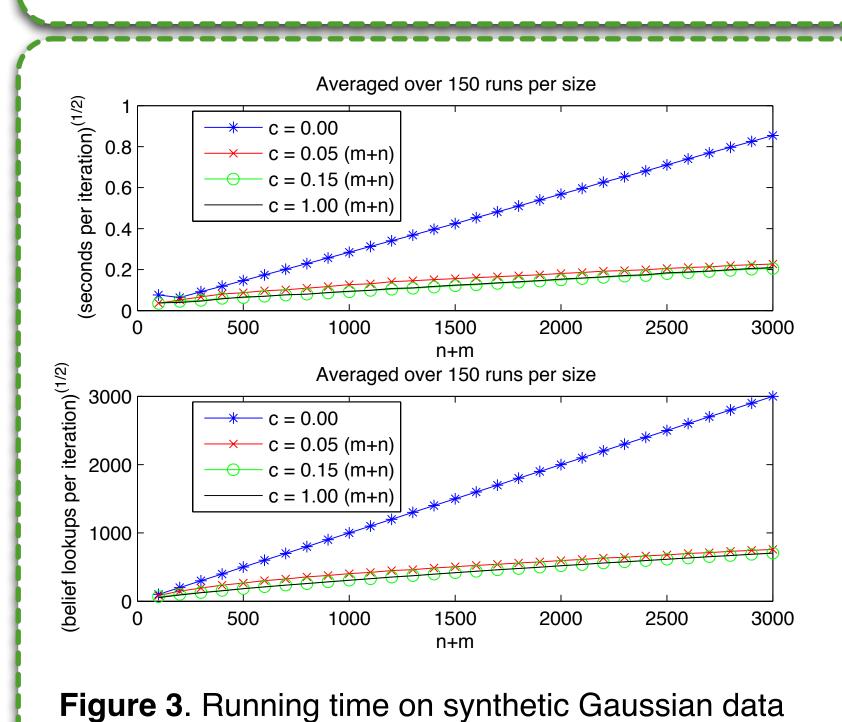


Figure 2. Running time for 1-matching compared to full BP and (unipartite) Blossom V (Kolmogorov 2009)



Experiments: MNIST Digits

MNIST digit matching: Match each test digit to 6b training digits

using different cache sizes (cache size is cN; c = 0 is

equivalent to previous belief propagation algorithm)

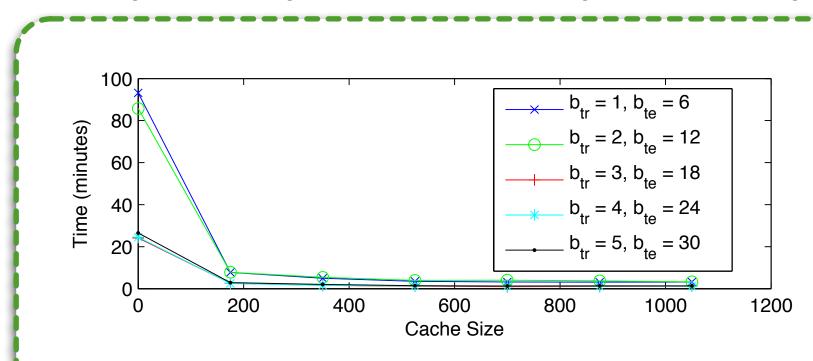


Figure 4. Running times for matching subsampled MNIST data using different cache sizes.

h.	<i>b</i> .	Time (min)	Belief Lookups	% Full
Dtr	<i>D</i> te		Defici Lookups	/ 0 1 un
1	6	285.77	$4.5992 imes 10^{10}$	0.94%
4	24	306.76	$5.2208 imes 10^{10}$	1.11%

Table 1. Running time for full MNIST (60,000 x 10,000 candidate edges). Neither memory nor running time would be bearable on a PC without the improvements provided here.

References

B. Huang and T. Jebara. Loopy belief propagation for bipartite maximum weight b-matching. AISTATS 2007

V. Kolmogorov. *Blossom v: a new implementation of a minimum* cost perfect matching algorithm. Math. Programming Comp. 2009

- J. McAuley and T. Caetano. Exploiting data-independence for fast belief-propagation. ICML 2010
- S. Sanghavi, D. Maliotov, A. Willsky. Linear programming analysis of loopy belief propagation for weighted matching. NIPS 2007