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Bipartite Weighted b-Matching

On bipartite graph, G = (U, V, F)
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Bipartite Weighted b-Matching

On bipartite graph, G = (U, V, F)
fur,...,u,t €U
{vi,...,0,} €V
E = (u;,v;), ViV

A = weight matrix

s.t. weight of edge (U, Uj) —



Bipartite Weighted b-Matching

Task: Find the maximum weight subset of £
such that each vertex has exactly b neighbors.



Bipartite Weighted b-Matching

Task: Find the maximum weight subset of £
such that each vertex has exactly b neighbors.

Example:




Bipartite Weighted b-Matching

Classical Application: Resource Allocation
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-A; ; skill of worker at performing task.

)

- n tasks Gl’mvlkv

- Team of b workers needed per task.




Bipartite Weighted b-Matching

Alternate uses of b-matching:
- Balanced k-nearest-neighbors
- Each node can only be picked k times.
- Robust to translations of test data.

- When test data 1s collected under different
conditions (e.g. time, location, instrument

calibration).



Bipartite Weighted b-Matching

Classical algorithms solve Max-Weighted b-
Matching in O(bn”) running time, such as:

- Blossom Algorithm (Edmonds 1965)
- Balanced Network Flow

(Fremuth-Paeger, Jungnickel 1999)
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Edge Weights As a Distribution

- Bayati, Shah, and Sharma (2005) formulated
the 1-matching problem as a probability
distribution.

- This work generalizes to arbitrary b.



Edge Weights As a Distribution

Variables:

Each vertex “chooses” b neighbors.



Example: wu;
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Variables:

Each vertex “chooses” b neighbors.



Edge Weights As a Distribution

Variables:
Each vertex “chooses” b neighbors.
For vertex u;,
X, CV, |X;|=05b

Similarly, for v, have variable Y;

Note: variables have (Z) possible settings.



Edge Weights As a Distribution

Weights as probabilities:

Since we sum weights but multiply

probabilities, exponentiate T
¢(X;) = exp( Z Aij) (Z) H
’UJ cX; i =




Edge Weights As a Distribution

Enforce b-matching:

Neighbor *“choices” must agree



Example: Invalid settings
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Edge Weights As a Distribution

Enforce b-matching:

Neighbor *“choices” must agree



Edge Weights As a Distribution

Enforce b-matching:
Neighbor “choices” must agree

Pairwise compatibility function:

w(XZ,Y}) — T = _l(?}j c X, Pu; € Y})
(4
l




Edge Weights As a Distribution

Px.Y) = - [[ w(x.v) [ e(xn)e(x)
k=1

2,7=1

¢(X;) = exp(5 Z Ajj o(Y;) = eXp(% > Ay)

u; €Y

B(X0 ) = () € X s € )




Edge Weights As a Distribution

Poxy) = ¥ T v ) [T ooy

2,7=1 k=1

(X, Y)) = ~(v; € Xs @ u; €Y5).

Ignore the Z normalization, P(X,Y) 1s exactly
the exponentiated weight of the h-matching.



Edge Weights As a Distribution

Poxy) = ¥ T v ) [T ooy

1,7=1 k=1

H(X,) = exp<X S Au) oY) = exp<x S Ay)

’UjEXZ' uiEYtj

(X, Y)) = ~(v; € Xs @ u; €Y5).

Also, since we’re maximizing, ignore the 1/2
(makes the math more readable).
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Standard Max-Product

Send messages between variables:

mx, (Y;) = — max | ¢(X;)0(X;,Y;) | | my, (X5)
i k3

Fuse messages to obtain beliefs (or estimate of
max-marginals):

b(X) = (X)) [y (%)
k




Standard Max-Product

Converges to true maximum on any tree
structured graph (Pearl 1986).

We show that 1t converges to the correct
maximum on our graph.



Standard Max-Product

Converges to true maximum on any tree
structured graph (Pearl 1986).

We show that 1t converges to the correct
maximum on our graph.

But what about the (Z)—length message and
belief vectors?



Efficient Max-Product

- Use algebraic tricks to reduce (Z)—length
message vectors to scalars.

- Derive new update rule for scalar messages.

- Use similar trick to maximize belief vectors
efficiently.

Let’s speed through the math.



Efficient Max-Product

Take advantage of binary ¥ (x;, y;) function:

Message vectors consist of only two values

M (Y5) 0 Max (i) [ o (i), if wi €
e -

ma;z(yj) X ma}; ¢(x2) H My, (ZEZ)? it u; §é Yj



Efficient Max-Product

Take advantage of binary ¥ (x;, y;) function:

Message vectors consist of only two values

Mg, (Y;) < max ¢(x; H My, (i), if u; € y;

ViET; -y
Mg, (Y;) X () | | my, (@), if wi ¢y,
e k3

If we rename these two values we can break
up the product.



Efficient Max-Product

Take advantage of binary ¥ (x;, y;) function:

Message vectors consist of only two values

Hz,y; O 11laxX ¢ ajz H ki H Vi

V;ET;
UK ET; \V; U &x; \v;
Veyy; X mgx ¢ ZUZ H ki H Vi -
v;¢x
’ Uk ET; \V; U &x; \v;

If we rename these two values we can break
up the product.



Efficient Max-Product

“Normalize” messages by dividing whole
vector by Vg, y.

. M,y .
Py, = and Vg, =1

Viviyj




Efficient Max-Product

“Normalize” messages by dividing whole
vector by Vg, y.

. Ha iy, .
:uZEiyj — j and V-’L‘z'yj =1
Viviyj
4 )
<Z’)—length vector » scalar

- J




Efficient Max-Product

Derive update rule:

maX;ecq, (i) | Lk, \j Hki

maxX;ge, Q(Ti) | [rep,\; ki

oy, =




Efficient Max-Product

Derive update rule:

N _ maXi ey, ¢(
:uac‘q;yj o mangéa;z- Qb(




Efficient Max-Product

Derive update rule:

Py,

MaXj;ex,; ¢(x2) 1

A

max;g,, ¢(v) ]

liex;\j Hki

maXjer; | [peq, eXP(Air) | lpex;\j Hki

MaX;dz, | lkcx, exp(Aix) | liex,\j Hki



Efficient Max-Product

Derive update rule:

maXjecg; Cb(%) igex;\j fki
max;g g, P(x;) Hiex;\j fhki
maXjezr; | lxeq, exp(Aix) Llkez;\j ki
maxXi;cqy, | lpes, exp(Aix) Lkex;\j fiki

exp(Aij) maXi eg, Hkéxi\j eXp(Aik)/lki

:uil?iyj o

maX;¢y, | [cqp eXP(Aij) ik



Efficient Max-Product

After canceling terms message update simplifies to

bth greatest setting

Ay
exfl( f) . /= of k for the term
eXp( ZE)ILLyEw’L eXp(Azk)myk(xz)as' t' k#-]

:umiyj —

and we maximize beliefs with

max b(x;) oc max¢(;) |
7 7 he,

o max | | exp(Ain)iy,q,
’ kex;

Both these updates take O(bn) time per vertex.
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Convergence Proof Sketch



Convergence Proof Sketch

Assumptions:
- Optimal b-matching 1s unique.
- € = difference between weight of best

and 2nd best b-matching is constant.

- Weights treated as constants.



Convergence Proof Sketch

Basic mechanism: Unwrapped Graph, T

1. Pick root node

2. Copy all neighbors

3. Continue but don’t backtrack
4. Continue to depth d
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Convergence Proof Sketch

Basic mechanism: Unwrapped Graph, T

1. Pick root node

2. Copy all neighbors

3. Continue but don’t backtrack
4. Continue to depth d




Convergence Proof Sketch

Basic mechanism: Unwrapped Graph, T

- Construction follows loopy BP messages
In reverse.

- True max-marginals of root node are
exactly belief at iteration d.

- Max of unwrapped graph distribution 1s
the maximum weight b-matching on tree.



Convergence Proof Sketch

Proof by contradiction:

What happens if optimal b-matching on T
differs from optimal b-matching on G at root?



Convergence Proof Sketch
D

Best b-matching on T

copied onto T

Best h-matching on G




Convergence Proof Sketch

There exists at least one path on 7T that
alternates between edges that are b)-matched in
each b-matching.



Convergence Proof Sketch

There exists at least one path on 7T that
alternates between edges that are b)-matched in
each b-matching.



Convergence Proof Sketch

Claim: If depth d is great enough, if we
replace the blue edges of this path with the red
edges 1n the optimal b-matching on 7', we get
a new b-matching with greater weight.
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Convergence Proof Sketch

Claim: If depth d is great enough, if we
replace the blue edges of this path with the red
edges 1n the optimal b-matching on 7', we get
a new b-matching with greater weight.



Convergence Proof Sketch

Modifying optimal b-matching ) Original contradiction
produced better b-matching impossible.

We can analyze the change in weight by
looking only at edges on path.




Convergence Proof Sketch

Loopy BP converges to true maximum weight
b-matching in d iterations

d> - max A;; = O(n)
€ 1,7

e = difference between weight of best
and 2nd best b-matching.



Convergence Proof Sketch

Loopy BP converges to true maximum weight
b-matching in d iterations

d> - max A;; = O(n)
€ 1,7

e = difference between weight of best
and 2nd best b-matching.

Running time of full algorithm: O(bn?>)
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Experiments

Running time comparison against GOBLIN
graph optimization library.

- Random weights.
- Varied graph size n from 3 to 100
- Varied b from 1 to Ln / QJ
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Experiments: Translated Test Data

On toy data, translation cripples KNN but
b-matching makes no classification errors.

Accuracy

Synthetic Data
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Experiments
MNIST Digits with pseudo-translation

- Image data with background changes 1s
like translation.

- Train on MNIST digits 3, 5, and 8.

IS§IRE

- Test on new examples with various
“bluescreen” textures.



Experiments
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Discussion

Provably convergent belief propagation for a
new type of graph (b-matchings).

+ Empirically faster than previous algorithms.

+ Parallelizeable

- Only bipartite case.
- Requires unique maximum.

Interesting theoretical results coming out of
sum-product for approximating marginals.



