
Loopy Belief Propagation for 
Bipartite Maximum Weight 

b-Matching

Bert Huang and Tony Jebara
Computer Science Department

Columbia University
New York, NY 10027



1. Bipartite Weighted b-Matching

2. Edge Weights As a Distribution

3. Efficient Max-Product

4. Convergence Proof Sketch

5. Experiments

6. Discussion

Outline



1. Bipartite Weighted b-Matching

2. Edge Weights As a Distribution

3. Efficient Max-Product

4. Convergence Proof Sketch

5. Experiments

6. Discussion

Outline



Bipartite Weighted b-Matching



Bipartite Weighted b-Matching

On bipartite graph, G = (U, V, E)
{u1, . . . , un} ∈ U

{v1, . . . , vn} ∈ V

E = (ui, vj),∀i∀j
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Abstract

We formulate the weighted b-matching ob-
jective function as a probability distribution
function and prove that belief propagation
(BP) on its graphical model converges to
the optimum. Standard BP on our graphi-
cal model cannot be computed in polynomial
time, but we introduce an algebraic method
to circumvent the combinatorial message up-
dates. Empirically, the resulting algorithm
is on average faster than popular combina-
torial implementations, while still scaling at
the same asymptotic rate of O(bn3). Further-
more, the algorithm shows promising perfor-
mance in machine learning applications.

1 INTRODUCTION
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Figure 1: Example b-matching MG on a bipartite graph G.
Dashed lines represent possible edges, solid lines represent
b-matched edges. In this case b = 2.

2 EXPERIMENTS

We elaborate the speed advantages of our method and
an application in machine learning where b-matching
can improve classification accuracy.

2.1 RUNNING TIME ANALYSIS

We compare the performance of our implementation
of belief propagation maximum weighted b-matching
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Figure 3: The cyclic alternating path PG starting at v1 on
G that corresponds to the nodes visited by PT . Edges are
numbered to help follow the loopy path.

against the free graph optimization package, GOBLIN.
1

Classical b-matching algorithms such as the balanced
network flow method used by the GOBLIN library run
in O(bn3) time [?]. The belief propagation method
takes O(bn) time to compute one iteration of message
updates for each of the 2n nodes and converges in O(n)
iterations. So, its overall running time is also O(bn3).

We ran both algorithms on randomly generated bipar-
tite graphs of 10 ≤ n ≤ 100 and 1 ≤ b ≤ n/2. We
generated the weight matrix with the rand function
in MATLAB, which picks each weight independently
from a uniform distribution between 0 and 1.

The GOBLIN library is C++ code and our implemen-
tation2 of belief propagation b-matching is in C. Both
were run on a 3.00 Ghz. Pentium 4 processor.

In general, the belief propagation runs hundreds of
times faster than GOBLIN. Figure 5 shows various
comparisons of their running times. The surface plots
show how the algorithms scale with respect to n and
b. The line plots show cross sections of these surface
plots, with appropriate transformations on the run-
ning time to show the scaling (without these transfor-
mations, the belief propagation line would appear to
be always zero due to the scale of the plot following

1Available at: http://www.math.uni-augsburg.de/opt/goblin.html
2Available at http://www.cs.columbia.edu/̃bert/bmatching
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Bipartite Weighted b-Matching

Task: Find the maximum weight subset of E 
such that each vertex has exactly b neighbors.



Bipartite Weighted b-Matching

Task: Find the maximum weight subset of E 
such that each vertex has exactly b neighbors.

Example:    

n = 4                                                   b = 2

Graphical models are powerful probabilistic construc-
tions that describe the dependencies between different
dimensions in a probability distribution. In an acyclic
graph, a graphical model can be correctly maximized
or marginalized by collecting messages from all leaf
nodes at some root, then distributing messages back
toward the leaf nodes [7].

However, when loops are present in the graph, belief
propagation methods often reach oscillation states or
converge to either local maxima or incorrect marginals.
Cases with a single loop have been analyzed in
[10], which gives an analytical expression relating the
steady-state beliefs to the true marginals.

Previous work related convergence of BP to types of
free energy in [8], and [5] describes general sufficient
conditions for convergence towards marginals.

Belief propagation has been generalized into a larger
set of algorithms called tree-based reparameterization
(TRP) in [9]. These algorithms iteratively reparam-
eterize the distribution without changing it based on
various trees in the original graph. Pairwise BP can
be interpreted as doing this on the two-node trees of
each edge. The set of graphs on which TRP converges
subsumes that of BP. However, we use standard belief
propagation here because it converges on our graph,
it is simpler to implement and has additional benefits
such as parallel computation.

In this work, we provide a proof of convergence based
on our specific graphical model and use the topology
of our graph to find our convergence time.

3 THE b-MATCHING GRAPHICAL
MODEL
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Figure 1: Example b-matching MG on a bipartite graph G.
Dashed lines represent possible edges, solid lines represent
b-matched edges. In this case b = 2.

Consider a bipartite graph G = (U, V, E) such that
U = {u1, . . . , un}, V = {v1, . . . , vn}, and E =
(ui, vj), ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , n}. Let A be
the weight matrix of G such that the weight of edge
(ui, vj) is Aij . Let a b-matching be characterized by a
function M(ui) or M(vj) that returns the set of neigh-
bor vertices of the input vertex in the b-matching. The
b-matching objective function can then be written as

max
M

W(M) =

max
M

n
∑

i=1

∑

vk∈M(ui)

Aik +
n

∑

j=1

∑

u!∈M(vj)

A!j

s.t. |M(ui)| = b, ∀i ∈ {1, . . . , n}
|M(vj)| = b, ∀j ∈ {1, . . . , n} .

(1)

If we define variables xi ∈ X and yj ∈ Y for each
vertex such that xi = M(ui), and yj = M(vj), we can
define the following functions:

φ(xi) = exp(
∑

vj∈xi

Aij), φ(yj) = exp(
∑

ui∈yj

Aij)

ψ(xi, yj) = ¬(vj ∈ xi ⊕ ui ∈ yj). (2)

Note that both X and Y have values over
(

n
b

)

con-
figurations. For example, for n = 4 and b = 2, xi

could be any entry from {{1, 2}, {1, 3}, {1, 4}, {2, 3},
{2, 4}, {3, 4}}. Similarly, if we were to crudely view
the potential functions φ(xi), φ(yj) and ψ(xi, yj) as

tables, these tables would be of size
(

n
b

)

,
(

n
b

)

and
(

n
b

)2

entries respectively. The potential function ψ(xi, yj)
is a binary function which goes to zero if yj contains
a configuration that chooses node ui when xi does not
contain a configuration that includes node vj and vice-
versa. These are zero configurations since they create
an invalid b-matching. Otherwise ψ(xi, yj) = 1 if xi

and yj are in configurations that could agree with a
feasible b-matching. In Section 3.2 we will show how
to avoid ever directly manipulating these cumbersome
tables explicitly.

Using the potentials and pairwise clique functions, we
can write out the weighted b-matching objective as a
probability distribution p(X, Y ) ∝ exp(W(M)) [1].

p(X, Y ) =
1

Z

n
∏

i=1

n
∏

j=1

ψ(xi, yj)
n

∏

k=1

φ(xk)φ(yk) (3)

3.1 THE MAX-PRODUCT ALGORITHM

We maximize this probability function using the max-
product algorithm. The max-product algorithm iter-
atively passes messages, which are vectors over set-
tings of the variables, between dependent variables and
stores beliefs, which are estimates of max-marginals.
The following are the update equations for messages
from xi to yj. To avoid clutter, we omit the formu-
las for messages from yj to xi because these update
equations for the reverse messages are the same ex-
cept we swap the x and the y terms. In general, the
default range of subscript indices is 1 through n; we
only indicate the exceptions.



Classical Application: Resource Allocation

- Manual labor

- n workers

- n tasks

- Team of b workers needed per task.

-        skill of worker at performing task.

Bipartite Weighted b-Matching

Aij

Tasks

Workers
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Bipartite Weighted b-Matching

Alternate uses of b-matching:

- Balanced k-nearest-neighbors

- Each node can only be picked k times.

- Robust to translations of test data.

- When test data is collected under different 
conditions (e.g. time, location, instrument 
calibration).



Bipartite Weighted b-Matching

Classical algorithms solve Max-Weighted b-
Matching in                running time, such as:

- Blossom Algorithm (Edmonds 1965)

- Balanced Network Flow 

(Fremuth-Paeger, Jungnickel 1999)

O(bn3)
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Edge Weights As a Distribution

- Bayati, Shah, and Sharma (2005) formulated 
the 1-matching problem as a probability 
distribution.

- This work generalizes to arbitrary b.



Edge Weights As a Distribution

Variables:

Each vertex “chooses” b neighbors.



Loopy Belief Propagation for Bipartite Maximum Weight b-Matching

Bert Huang

Computer Science Dept.
Columbia University
New York, NY 10027

Tony Jebara

Computer Science Dept.
Columbia University
New York, NY 10027

Abstract

We formulate the weighted b-matching ob-
jective function as a probability distribution
function and prove that belief propagation
(BP) on its graphical model converges to
the optimum. Standard BP on our graphi-
cal model cannot be computed in polynomial
time, but we introduce an algebraic method
to circumvent the combinatorial message up-
dates. Empirically, the resulting algorithm
is on average faster than popular combina-
torial implementations, while still scaling at
the same asymptotic rate of O(bn3). Further-
more, the algorithm shows promising perfor-
mance in machine learning applications.

1 INTRODUCTION
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2 EXPERIMENTS

We elaborate the speed advantages of our method and
an application in machine learning where b-matching
can improve classification accuracy.

u1
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v1 v2 v3 v4

2.1 RUNNING TIME ANALYSIS

We compare the performance of our implementation
of belief propagation maximum weighted b-matching
against the free graph optimization package, GOBLIN.
1

Classical b-matching algorithms such as the balanced
network flow method used by the GOBLIN library run
in O(bn3) time [?]. The belief propagation method
takes O(bn) time to compute one iteration of message
updates for each of the 2n nodes and converges in O(n)
iterations. So, its overall running time is also O(bn3).

We ran both algorithms on randomly generated bipar-
tite graphs of 10 ≤ n ≤ 100 and 1 ≤ b ≤ n/2. We
generated the weight matrix with the rand function
in MATLAB, which picks each weight independently

1Available at: http://www.math.uni-augsburg.de/opt/goblin.html
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We ran both algorithms on randomly generated bipar-
tite graphs of 10 ≤ n ≤ 100 and 1 ≤ b ≤ n/2. We
generated the weight matrix with the rand function
in MATLAB, which picks each weight independently

1Available at: http://www.math.uni-augsburg.de/opt/goblin.html
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Edge Weights As a Distribution

Variables:

Each vertex “chooses” b neighbors.

For vertex      , 

Similarly, for       have variable 

Note: variables have        possible settings.

ui

vj

(

n

b

)

Xi ⊂ V, |Xi| = b

Yj



Edge Weights As a Distribution

Weights as probabilities:

Since we sum weights but multiply 
probabilities, exponentiate.

(

n

b

)φ(Xi) = exp(
1

2

∑

vj∈Xi

Aij)

φ(Yj) = exp(
1

2

∑

ui∈Yj

Aij)



Edge Weights As a Distribution

Enforce b-matching:

Neighbor “choices” must agree
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Abstract

We formulate the weighted b-matching ob-
jective function as a probability distribution
function and prove that belief propagation
(BP) on its graphical model converges to
the optimum. Standard BP on our graphi-
cal model cannot be computed in polynomial
time, but we introduce an algebraic method
to circumvent the combinatorial message up-
dates. Empirically, the resulting algorithm
is on average faster than popular combina-
torial implementations, while still scaling at
the same asymptotic rate of O(bn3). Further-
more, the algorithm shows promising perfor-
mance in machine learning applications.

1 INTRODUCTION
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2 EXPERIMENTS

We elaborate the speed advantages of our method and
an application in machine learning where b-matching
can improve classification accuracy.

u1

v1 v2 v3 v4

u1

v1 v2 v3 v4

2.1 RUNNING TIME ANALYSIS

We compare the performance of our implementation
of belief propagation maximum weighted b-matching
against the free graph optimization package, GOBLIN.
1

Classical b-matching algorithms such as the balanced
network flow method used by the GOBLIN library run
in O(bn3) time [?]. The belief propagation method
takes O(bn) time to compute one iteration of message
updates for each of the 2n nodes and converges in O(n)
iterations. So, its overall running time is also O(bn3).

We ran both algorithms on randomly generated bipar-
tite graphs of 10 ≤ n ≤ 100 and 1 ≤ b ≤ n/2. We
generated the weight matrix with the rand function
in MATLAB, which picks each weight independently

1Available at: http://www.math.uni-augsburg.de/opt/goblin.html
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Figure 4: Example unwrapped graph T of G at 3 iterations. The matching M̃T is highlighted based on MG from Figure
2. Note that leaf nodes cannot have perfect b-matchings, but all inner nodes and the root do. One possible path PT is
highlighted, which is discussed in Lemma ??.

. . .u2v2u4v1u1v3u4v1u3

First cycle

(a) PG

u4

v3u1

v1

(b) c1

. . .u2v2u4v1u3

(c) PG \ c1

Figure 6: (a) One possible extension of PG from Figure 1. This path comes from a deeper T so PG is longer. The first
cycle c1 detected is highlighted. (b) Cycle c1 from PG. (c) The remainder of PG when we remove c1. Note the alternation
of the matched edges remains consistent even when we cut out cycles in the interior of the path.
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u1 u2 u3 u4
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Figure 1: Example b-matching MG on a bipartite graph G.
Dashed lines represent possible edges, solid lines represent
b-matched edges. In this case b = 2.

from a uniform distribution between 0 and 1.

The GOBLIN library is C++ code and our implemen-
tation2 of belief propagation b-matching is in C. Both
were run on a 3.00 Ghz. Pentium 4 processor.

In general, the belief propagation runs hundreds of
times faster than GOBLIN. Figure 6 shows various
comparisons of their running times. The surface plots
show how the algorithms scale with respect to n and
b. The line plots show cross sections of these surface
plots, with appropriate transformations on the run-
ning time to show the scaling (without these transfor-
mations, the belief propagation line would appear to

2Available at http://www.cs.columbia.edu/̃bert/bmatching

u1 u2 u3 u4

v1

Figure 2: Example b-matching MG on a bipartite graph G.
Dashed lines represent possible edges, solid lines represent
b-matched edges. In this case b = 2.

u1 u2 u3 u4

v1 v2 v3 v4

Figure 3: Example b-matching MG on a bipartite graph G.
Dashed lines represent possible edges, solid lines represent
b-matched edges. In this case b = 2.

be always zero due to the scale of the plot following
the GOBLIN line). Since both algorithms have run-
ning time O(bn3), when we fix b = 5, we get a cubic
curve. When we fix b = n/2, we get a quartic curve
because b becomes a function of n.

2.2 b-MATCHING FOR CLASSIFICATION

One natural application of b-matching is as an im-
provement over k-nearest neighbor (KNN) for classi-
fication. Using KNN for classification is a quick way
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Edge Weights As a Distribution

Enforce b-matching:

Neighbor “choices” must agree

Pairwise compatibility function:

= ¬(vj ∈ Xi ⊕ ui ∈ Yj).

(

n

b

)

(

n

b

)

ψ(Xi, Yj) =



Edge Weights As a Distribution

φ(Xi) = exp(
1

2

∑

vj∈Xi

Aij) φ(Yj) = exp(
1

2

∑

ui∈Yj

Aij)

ψ(Xi, Yj) = ¬(vj ∈ Xi ⊕ ui ∈ Yj).

P (X, Y ) =
1

Z

n∏

i,j=1

ψ(Xi, Yj)
n∏

k=1

φ(Xk)φ(Yj)



Edge Weights As a Distribution

Ignore the Z normalization, P(X,Y) is exactly 
the exponentiated weight of the b-matching.

φ(Xi) = exp(
1

2

∑

vj∈Xi

Aij) φ(Yj) = exp(
1

2

∑

ui∈Yj

Aij)

ψ(Xi, Yj) = ¬(vj ∈ Xi ⊕ ui ∈ Yj).

P (X, Y ) =
1

Z

n∏

i,j=1

ψ(Xi, Yj)
n∏

k=1

φ(Xk)φ(Yj)



Edge Weights As a Distribution

Also, since we’re maximizing, ignore the 1/2 
(makes the math more readable).

φ(Xi) = exp(
1

2

∑

vj∈Xi

Aij) φ(Yj) = exp(
1

2

∑

ui∈Yj

Aij)

ψ(Xi, Yj) = ¬(vj ∈ Xi ⊕ ui ∈ Yj).

P (X, Y ) =
1

Z

n∏

i,j=1

ψ(Xi, Yj)
n∏

k=1

φ(Xk)φ(Yj)
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2. Edge Weights As a Distribution
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Standard Max-Product

Send messages between variables:

Fuse messages to obtain beliefs (or estimate of 
max-marginals):

mXi
(Yj) =

1

Z
max
Xi



φ(Xi)ψ(Xi, Yj)
∏

k !=j

mYk
(Xi)





b(Xi) =
1

Z
φ(Xi)

∏

k

mYk
(Xi)



Standard Max-Product

Converges to true maximum on any tree 
structured graph (Pearl 1986).

We show that it converges to the correct 
maximum on our graph. 



Standard Max-Product

Converges to true maximum on any tree 
structured graph (Pearl 1986).

We show that it converges to the correct 
maximum on our graph. 

But what about the      -length message and 
belief vectors?

(

n

b

)



Efficient Max-Product

- Use algebraic tricks to reduce       -length 
message vectors to scalars.

- Derive new update rule for scalar messages.

- Use similar trick to maximize belief vectors 
efficiently.

(

n

b

)

Let’s speed through the math.



Efficient Max-Product

Take advantage of binary                   function:

Message vectors consist of only two values

ψ(xi, yj)

mxi(yj) =
1

Z
max

xi



φ(xi)ψ(xi, yj)
∏

k !=j

myk
(xi)





b(xi) =
1

Z
φ(xi)

∏

k

myk
(xi)

Loopy belief propagation on this graph converges to
the optimum. However, since there are

(

n
b

)

possible
settings for each variable, direct belief propagation is
not feasible with larger graphs.

3.2 EFFICIENT BELIEF PROPAGATION
OF

(

n
b

)

-LENGTH MESSAGE VECTORS

We exploit three peculiarities of the above formulation
to fully represent the

(n
b

)

length messages as scalars.

First, the ψ functions are well structured, and their
structure causes the maximization term in the message
updates to always be one of two values.

mxi(yj) ∝ max
vj∈xi

φ(xi)
∏

k !=j

myk
(xi), if ui ∈ yj

mxi(yj) ∝ max
vj /∈xi

φ(xi)
∏

k !=j

myk
(xi), if ui /∈ yj (4)

This is because the ψ function changes based only on
whether the setting of yj indicates that vj shares an
edge with ui. Furthermore, if we redefine the above
message values as two scalars, we can write the mes-
sages more specifically as

µxiyj ∝ max
vj∈xi

φ(xi)
∏

uk∈xi\vj

µki

∏

uk /∈xi\vj

νki

νxiyj ∝ max
vj /∈xi

φ(xi)
∏

uk∈xi\vj

µki

∏

uk /∈xi\vj

νki. (5)

Second, since the messages are unnormalized proba-
bilities, we can divide any constant from the vectors
without changing the result. We divide all entries in
the message vector by νxiyj to get

µ̂xiyj =
µxiyj

νxiyj

and ν̂xiyj = 1 .

This lossless compression scheme simplifies the storage
of message vectors from length

(

n
b

)

to 1.

We rewrite the φ functions as a product of the expo-
nentiated Aij weights and eliminate the need to ex-
haustively maximize over all possible sets of size b. In-
serting Equation (2) into the definition of µ̂xiyj gives

µ̂xiyj =
maxj∈xi φ(xi)

∏

k∈xi\j µ̂ki

maxj /∈xi
φ(xi)

∏

k∈xi\j µ̂ki

=
maxj∈xi

∏

k∈xi
exp(Aik)

∏

k∈xi\j µ̂ki

maxj /∈xi

∏

k∈xi
exp(Aik)

∏

k∈xi\j µ̂ki

=
exp(Aij)maxj∈xi

∏

k∈xi\j exp(Aik)µ̂ki

maxj /∈xi

∏

k∈xi
exp(Aij)µ̂ki

(6)

We cancel out common terms and are left with the
simple message update rule,

µ̂xiyj =
exp(Aij)

exp(Ai!)µ̂y!xi

.

Here, the index $ refers to the the bth greatest set-
ting of k for the term exp(Aik)myk(xi), where k #= j.
This compressed version of a message update can be
computed in O(bn) time.

We cannot efficiently reconstruct the entire belief vec-
tor but we can efficiently find its maximum.

max
xi

b(xi) ∝ max
xi

φ(xi)
∏

k∈xi

µ̂ykxi

∝ max
xi

∏

k∈xi

exp(Aik)µ̂ykxi (7)

Finally, to maximize over xi we enumerate k and
greedily select the b largest values of exp(Aik)µ̂ykxi .

The above procedure avoids enumerating all
(n

b

)

en-
tries in the belief vector, and instead reshapes the dis-
tribution into a b dimensional hypercube. The maxi-
mum of the hypercube is found efficiently by searching
each dimension independently. Note that each dimen-
sion represents one of the b edges for node ui.

4 PROOF OF CONVERGENCE

We begin with the assumption that MG, the maxi-
mum weight b-matching on G, is unique. Moreover,
W(MG), the weight of MG, is greater than that of any
other matching by a constant ε.

ε = W(MG) − max
M !=MG

W(M)

Let T be the unwrapped graph of G from node ui. An
unwrapped graph is a tree that contains representa-
tions of all paths of length d in G originating from a
single root node without any backtracking. Each node
in T maps to a corresponding node in G, and each node
in G maps to multiple nodes in T . Nodes and edges in
T have the same local connectivity and potential func-
tions as their corresponding nodes in G. Let r be the
root of T that corresponds to ui in the original graph



Efficient Max-Product

Take advantage of binary                   function:

Message vectors consist of only two values

If we rename these two values we can break 
up the product.

ψ(xi, yj)

mxi(yj) =
1

Z
max

xi



φ(xi)ψ(xi, yj)
∏

k !=j

myk
(xi)





b(xi) =
1

Z
φ(xi)

∏

k

myk
(xi)

Loopy belief propagation on this graph converges to
the optimum. However, since there are

(

n
b

)

possible
settings for each variable, direct belief propagation is
not feasible with larger graphs.

3.2 EFFICIENT BELIEF PROPAGATION
OF

(

n
b

)

-LENGTH MESSAGE VECTORS

We exploit three peculiarities of the above formulation
to fully represent the

(n
b

)

length messages as scalars.

First, the ψ functions are well structured, and their
structure causes the maximization term in the message
updates to always be one of two values.

mxi(yj) ∝ max
vj∈xi

φ(xi)
∏

k !=j

myk
(xi), if ui ∈ yj

mxi(yj) ∝ max
vj /∈xi

φ(xi)
∏

k !=j

myk
(xi), if ui /∈ yj (4)

This is because the ψ function changes based only on
whether the setting of yj indicates that vj shares an
edge with ui. Furthermore, if we redefine the above
message values as two scalars, we can write the mes-
sages more specifically as

µxiyj ∝ max
vj∈xi

φ(xi)
∏

uk∈xi\vj

µki

∏

uk /∈xi\vj

νki

νxiyj ∝ max
vj /∈xi

φ(xi)
∏

uk∈xi\vj

µki

∏

uk /∈xi\vj

νki. (5)

Second, since the messages are unnormalized proba-
bilities, we can divide any constant from the vectors
without changing the result. We divide all entries in
the message vector by νxiyj to get

µ̂xiyj =
µxiyj

νxiyj

and ν̂xiyj = 1 .

This lossless compression scheme simplifies the storage
of message vectors from length

(

n
b

)

to 1.

We rewrite the φ functions as a product of the expo-
nentiated Aij weights and eliminate the need to ex-
haustively maximize over all possible sets of size b. In-
serting Equation (2) into the definition of µ̂xiyj gives

µ̂xiyj =
maxj∈xi φ(xi)

∏

k∈xi\j µ̂ki

maxj /∈xi
φ(xi)

∏

k∈xi\j µ̂ki

=
maxj∈xi

∏

k∈xi
exp(Aik)

∏

k∈xi\j µ̂ki

maxj /∈xi

∏

k∈xi
exp(Aik)

∏

k∈xi\j µ̂ki

=
exp(Aij)maxj∈xi

∏

k∈xi\j exp(Aik)µ̂ki

maxj /∈xi

∏

k∈xi
exp(Aij)µ̂ki

(6)

We cancel out common terms and are left with the
simple message update rule,

µ̂xiyj =
exp(Aij)

exp(Ai!)µ̂y!xi

.

Here, the index $ refers to the the bth greatest set-
ting of k for the term exp(Aik)myk(xi), where k #= j.
This compressed version of a message update can be
computed in O(bn) time.

We cannot efficiently reconstruct the entire belief vec-
tor but we can efficiently find its maximum.

max
xi

b(xi) ∝ max
xi

φ(xi)
∏

k∈xi

µ̂ykxi

∝ max
xi

∏

k∈xi

exp(Aik)µ̂ykxi (7)

Finally, to maximize over xi we enumerate k and
greedily select the b largest values of exp(Aik)µ̂ykxi .

The above procedure avoids enumerating all
(n

b

)

en-
tries in the belief vector, and instead reshapes the dis-
tribution into a b dimensional hypercube. The maxi-
mum of the hypercube is found efficiently by searching
each dimension independently. Note that each dimen-
sion represents one of the b edges for node ui.

4 PROOF OF CONVERGENCE

We begin with the assumption that MG, the maxi-
mum weight b-matching on G, is unique. Moreover,
W(MG), the weight of MG, is greater than that of any
other matching by a constant ε.

ε = W(MG) − max
M !=MG

W(M)

Let T be the unwrapped graph of G from node ui. An
unwrapped graph is a tree that contains representa-
tions of all paths of length d in G originating from a
single root node without any backtracking. Each node
in T maps to a corresponding node in G, and each node
in G maps to multiple nodes in T . Nodes and edges in
T have the same local connectivity and potential func-
tions as their corresponding nodes in G. Let r be the
root of T that corresponds to ui in the original graph



Efficient Max-Product

Take advantage of binary                   function:

Message vectors consist of only two values

If we rename these two values we can break 
up the product.

ψ(xi, yj)

mxi(yj) =
1

Z
max

xi



φ(xi)ψ(xi, yj)
∏

k !=j

myk
(xi)





b(xi) =
1

Z
φ(xi)

∏

k

myk
(xi)

Loopy belief propagation on this graph converges to
the optimum. However, since there are

(

n
b

)

possible
settings for each variable, direct belief propagation is
not feasible with larger graphs.

3.2 EFFICIENT BELIEF PROPAGATION
OF

(

n
b

)

-LENGTH MESSAGE VECTORS

We exploit three peculiarities of the above formulation
to fully represent the

(n
b

)

length messages as scalars.

First, the ψ functions are well structured, and their
structure causes the maximization term in the message
updates to always be one of two values.

mxi(yj) ∝ max
vj∈xi

φ(xi)
∏

k !=j

myk
(xi), if ui ∈ yj

mxi(yj) ∝ max
vj /∈xi

φ(xi)
∏

k !=j

myk
(xi), if ui /∈ yj (4)

This is because the ψ function changes based only on
whether the setting of yj indicates that vj shares an
edge with ui. Furthermore, if we redefine the above
message values as two scalars, we can write the mes-
sages more specifically as

µxiyj ∝ max
vj∈xi

φ(xi)
∏

uk∈xi\vj

µki

∏

uk /∈xi\vj

νki

νxiyj ∝ max
vj /∈xi

φ(xi)
∏

uk∈xi\vj

µki

∏

uk /∈xi\vj

νki. (5)

Second, since the messages are unnormalized proba-
bilities, we can divide any constant from the vectors
without changing the result. We divide all entries in
the message vector by νxiyj to get

µ̂xiyj =
µxiyj

νxiyj

and ν̂xiyj = 1 .

This lossless compression scheme simplifies the storage
of message vectors from length

(

n
b

)

to 1.

We rewrite the φ functions as a product of the expo-
nentiated Aij weights and eliminate the need to ex-
haustively maximize over all possible sets of size b. In-
serting Equation (2) into the definition of µ̂xiyj gives

µ̂xiyj =
maxj∈xi φ(xi)

∏

k∈xi\j µ̂ki

maxj /∈xi
φ(xi)

∏

k∈xi\j µ̂ki

=
maxj∈xi

∏

k∈xi
exp(Aik)

∏

k∈xi\j µ̂ki

maxj /∈xi

∏

k∈xi
exp(Aik)

∏

k∈xi\j µ̂ki

=
exp(Aij)maxj∈xi

∏

k∈xi\j exp(Aik)µ̂ki

maxj /∈xi

∏

k∈xi
exp(Aij)µ̂ki

(6)

We cancel out common terms and are left with the
simple message update rule,

µ̂xiyj =
exp(Aij)

exp(Ai!)µ̂y!xi

.

Here, the index $ refers to the the bth greatest set-
ting of k for the term exp(Aik)myk(xi), where k #= j.
This compressed version of a message update can be
computed in O(bn) time.

We cannot efficiently reconstruct the entire belief vec-
tor but we can efficiently find its maximum.

max
xi

b(xi) ∝ max
xi

φ(xi)
∏

k∈xi

µ̂ykxi

∝ max
xi

∏

k∈xi

exp(Aik)µ̂ykxi (7)

Finally, to maximize over xi we enumerate k and
greedily select the b largest values of exp(Aik)µ̂ykxi .

The above procedure avoids enumerating all
(n

b

)

en-
tries in the belief vector, and instead reshapes the dis-
tribution into a b dimensional hypercube. The maxi-
mum of the hypercube is found efficiently by searching
each dimension independently. Note that each dimen-
sion represents one of the b edges for node ui.

4 PROOF OF CONVERGENCE

We begin with the assumption that MG, the maxi-
mum weight b-matching on G, is unique. Moreover,
W(MG), the weight of MG, is greater than that of any
other matching by a constant ε.

ε = W(MG) − max
M !=MG

W(M)

Let T be the unwrapped graph of G from node ui. An
unwrapped graph is a tree that contains representa-
tions of all paths of length d in G originating from a
single root node without any backtracking. Each node
in T maps to a corresponding node in G, and each node
in G maps to multiple nodes in T . Nodes and edges in
T have the same local connectivity and potential func-
tions as their corresponding nodes in G. Let r be the
root of T that corresponds to ui in the original graph



Efficient Max-Product

“Normalize” messages by dividing whole 
vector by

mxi(yj) =
1

Z
max

xi



φ(xi)ψ(xi, yj)
∏

k !=j

myk
(xi)





b(xi) =
1

Z
φ(xi)

∏

k

myk
(xi)

Loopy belief propagation on this graph converges to
the optimum. However, since there are

(

n
b

)

possible
settings for each variable, direct belief propagation is
not feasible with larger graphs.

3.2 EFFICIENT BELIEF PROPAGATION
OF
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n
b
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-LENGTH MESSAGE VECTORS

We exploit three peculiarities of the above formulation
to fully represent the
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b

)

length messages as scalars.

First, the ψ functions are well structured, and their
structure causes the maximization term in the message
updates to always be one of two values.

mxi(yj) ∝ max
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φ(xi)
∏

k !=j

myk
(xi), if ui ∈ yj

mxi(yj) ∝ max
vj /∈xi

φ(xi)
∏

k !=j

myk
(xi), if ui /∈ yj (4)

This is because the ψ function changes based only on
whether the setting of yj indicates that vj shares an
edge with ui. Furthermore, if we redefine the above
message values as two scalars, we can write the mes-
sages more specifically as

µxiyj ∝ max
vj∈xi

φ(xi)
∏

uk∈xi\vj

µki

∏
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νki

νxiyj ∝ max
vj /∈xi

φ(xi)
∏

uk∈xi\vj

µki

∏

uk /∈xi\vj

νki. (5)

Second, since the messages are unnormalized proba-
bilities, we can divide any constant from the vectors
without changing the result. We divide all entries in
the message vector by νxiyj to get

µ̂xiyj =
µxiyj

νxiyj

and ν̂xiyj = 1 .

This lossless compression scheme simplifies the storage
of message vectors from length

(

n
b

)

to 1.

We rewrite the φ functions as a product of the expo-
nentiated Aij weights and eliminate the need to ex-
haustively maximize over all possible sets of size b. In-
serting Equation (2) into the definition of µ̂xiyj gives

µ̂xiyj =
maxj∈xi φ(xi)

∏

k∈xi\j µ̂ki

maxj /∈xi
φ(xi)

∏

k∈xi\j µ̂ki
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(6)

We cancel out common terms and are left with the
simple message update rule,

µ̂xiyj =
exp(Aij)

exp(Ai!)µ̂y!xi

.

Here, the index $ refers to the the bth greatest set-
ting of k for the term exp(Aik)myk(xi), where k #= j.
This compressed version of a message update can be
computed in O(bn) time.

We cannot efficiently reconstruct the entire belief vec-
tor but we can efficiently find its maximum.

max
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b(xi) ∝ max
xi

φ(xi)
∏

k∈xi

µ̂ykxi

∝ max
xi

∏
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exp(Aik)µ̂ykxi (7)

Finally, to maximize over xi we enumerate k and
greedily select the b largest values of exp(Aik)µ̂ykxi .

The above procedure avoids enumerating all
(n

b

)

en-
tries in the belief vector, and instead reshapes the dis-
tribution into a b dimensional hypercube. The maxi-
mum of the hypercube is found efficiently by searching
each dimension independently. Note that each dimen-
sion represents one of the b edges for node ui.

4 PROOF OF CONVERGENCE

We begin with the assumption that MG, the maxi-
mum weight b-matching on G, is unique. Moreover,
W(MG), the weight of MG, is greater than that of any
other matching by a constant ε.

ε = W(MG) − max
M !=MG

W(M)

Let T be the unwrapped graph of G from node ui. An
unwrapped graph is a tree that contains representa-
tions of all paths of length d in G originating from a
single root node without any backtracking. Each node
in T maps to a corresponding node in G, and each node
in G maps to multiple nodes in T . Nodes and edges in
T have the same local connectivity and potential func-
tions as their corresponding nodes in G. Let r be the
root of T that corresponds to ui in the original graph
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the optimum. However, since there are
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possible
settings for each variable, direct belief propagation is
not feasible with larger graphs.
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nentiated Aij weights and eliminate the need to ex-
haustively maximize over all possible sets of size b. In-
serting Equation (2) into the definition of µ̂xiyj gives
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We cancel out common terms and are left with the
simple message update rule,

µ̂xiyj =
exp(Aij)

exp(Ai!)µ̂y!xi

.

Here, the index $ refers to the the bth greatest set-
ting of k for the term exp(Aik)myk(xi), where k #= j.
This compressed version of a message update can be
computed in O(bn) time.

We cannot efficiently reconstruct the entire belief vec-
tor but we can efficiently find its maximum.
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Finally, to maximize over xi we enumerate k and
greedily select the b largest values of exp(Aik)µ̂ykxi .

The above procedure avoids enumerating all
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en-
tries in the belief vector, and instead reshapes the dis-
tribution into a b dimensional hypercube. The maxi-
mum of the hypercube is found efficiently by searching
each dimension independently. Note that each dimen-
sion represents one of the b edges for node ui.

4 PROOF OF CONVERGENCE

We begin with the assumption that MG, the maxi-
mum weight b-matching on G, is unique. Moreover,
W(MG), the weight of MG, is greater than that of any
other matching by a constant ε.

ε = W(MG) − max
M !=MG

W(M)

Let T be the unwrapped graph of G from node ui. An
unwrapped graph is a tree that contains representa-
tions of all paths of length d in G originating from a
single root node without any backtracking. Each node
in T maps to a corresponding node in G, and each node
in G maps to multiple nodes in T . Nodes and edges in
T have the same local connectivity and potential func-
tions as their corresponding nodes in G. Let r be the
root of T that corresponds to ui in the original graph
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bilities, we can divide any constant from the vectors
without changing the result. We divide all entries in
the message vector by νxiyj to get

µ̂xiyj =
µxiyj
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and ν̂xiyj = 1 .

This lossless compression scheme simplifies the storage
of message vectors from length
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to 1.

We rewrite the φ functions as a product of the expo-
nentiated Aij weights and eliminate the need to ex-
haustively maximize over all possible sets of size b. In-
serting Equation (2) into the definition of µ̂xiyj gives
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We cancel out common terms and are left with the
simple message update rule,

µ̂xiyj =
exp(Aij)

exp(Ai!)µ̂y!xi

.

Here, the index $ refers to the the bth greatest set-
ting of k for the term exp(Aik)myk(xi), where k #= j.
This compressed version of a message update can be
computed in O(bn) time.

We cannot efficiently reconstruct the entire belief vec-
tor but we can efficiently find its maximum.
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∏

k∈xi

µ̂ykxi

∝ max
xi

∏
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Finally, to maximize over xi we enumerate k and
greedily select the b largest values of exp(Aik)µ̂ykxi .

The above procedure avoids enumerating all
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en-
tries in the belief vector, and instead reshapes the dis-
tribution into a b dimensional hypercube. The maxi-
mum of the hypercube is found efficiently by searching
each dimension independently. Note that each dimen-
sion represents one of the b edges for node ui.

4 PROOF OF CONVERGENCE

We begin with the assumption that MG, the maxi-
mum weight b-matching on G, is unique. Moreover,
W(MG), the weight of MG, is greater than that of any
other matching by a constant ε.

ε = W(MG) − max
M !=MG

W(M)

Let T be the unwrapped graph of G from node ui. An
unwrapped graph is a tree that contains representa-
tions of all paths of length d in G originating from a
single root node without any backtracking. Each node
in T maps to a corresponding node in G, and each node
in G maps to multiple nodes in T . Nodes and edges in
T have the same local connectivity and potential func-
tions as their corresponding nodes in G. Let r be the
root of T that corresponds to ui in the original graph
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Loopy belief propagation on this graph converges to
the optimum. However, since there are
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possible
settings for each variable, direct belief propagation is
not feasible with larger graphs.
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We exploit three peculiarities of the above formulation
to fully represent the
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length messages as scalars.

First, the ψ functions are well structured, and their
structure causes the maximization term in the message
updates to always be one of two values.
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(xi), if ui ∈ yj
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(xi), if ui /∈ yj (4)

This is because the ψ function changes based only on
whether the setting of yj indicates that vj shares an
edge with ui. Furthermore, if we redefine the above
message values as two scalars, we can write the mes-
sages more specifically as

µxiyj ∝ max
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∏
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Second, since the messages are unnormalized proba-
bilities, we can divide any constant from the vectors
without changing the result. We divide all entries in
the message vector by νxiyj to get

µ̂xiyj =
µxiyj

νxiyj

and ν̂xiyj = 1 .

This lossless compression scheme simplifies the storage
of message vectors from length
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to 1.

We rewrite the φ functions as a product of the expo-
nentiated Aij weights and eliminate the need to ex-
haustively maximize over all possible sets of size b. In-
serting Equation (2) into the definition of µ̂xiyj gives

µ̂xiyj =
maxj∈xi φ(xi)
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We cancel out common terms and are left with the
simple message update rule,

µ̂xiyj =
exp(Aij)

exp(Ai!)µ̂y!xi

.

Here, the index $ refers to the the bth greatest set-
ting of k for the term exp(Aik)myk(xi), where k #= j.
This compressed version of a message update can be
computed in O(bn) time.

We cannot efficiently reconstruct the entire belief vec-
tor but we can efficiently find its maximum.
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∏
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Finally, to maximize over xi we enumerate k and
greedily select the b largest values of exp(Aik)µ̂ykxi .

The above procedure avoids enumerating all
(n
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en-
tries in the belief vector, and instead reshapes the dis-
tribution into a b dimensional hypercube. The maxi-
mum of the hypercube is found efficiently by searching
each dimension independently. Note that each dimen-
sion represents one of the b edges for node ui.

4 PROOF OF CONVERGENCE

We begin with the assumption that MG, the maxi-
mum weight b-matching on G, is unique. Moreover,
W(MG), the weight of MG, is greater than that of any
other matching by a constant ε.

ε = W(MG) − max
M !=MG

W(M)

Let T be the unwrapped graph of G from node ui. An
unwrapped graph is a tree that contains representa-
tions of all paths of length d in G originating from a
single root node without any backtracking. Each node
in T maps to a corresponding node in G, and each node
in G maps to multiple nodes in T . Nodes and edges in
T have the same local connectivity and potential func-
tions as their corresponding nodes in G. Let r be the
root of T that corresponds to ui in the original graph

φ(xi) ∝
∏

k∈xi

exp(Aik)



Efficient Max-Product

Derive update rule:

mxi(yj) =
1

Z
max

xi



φ(xi)ψ(xi, yj)
∏

k !=j

myk
(xi)





b(xi) =
1

Z
φ(xi)

∏

k

myk
(xi)

Loopy belief propagation on this graph converges to
the optimum. However, since there are
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not feasible with larger graphs.

3.2 EFFICIENT BELIEF PROPAGATION
OF

(

n
b

)

-LENGTH MESSAGE VECTORS
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(xi), if ui /∈ yj (4)

This is because the ψ function changes based only on
whether the setting of yj indicates that vj shares an
edge with ui. Furthermore, if we redefine the above
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sages more specifically as
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Second, since the messages are unnormalized proba-
bilities, we can divide any constant from the vectors
without changing the result. We divide all entries in
the message vector by νxiyj to get

µ̂xiyj =
µxiyj
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and ν̂xiyj = 1 .

This lossless compression scheme simplifies the storage
of message vectors from length
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to 1.

We rewrite the φ functions as a product of the expo-
nentiated Aij weights and eliminate the need to ex-
haustively maximize over all possible sets of size b. In-
serting Equation (2) into the definition of µ̂xiyj gives
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We cancel out common terms and are left with the
simple message update rule,

µ̂xiyj =
exp(Aij)

exp(Ai!)µ̂y!xi

.

Here, the index $ refers to the the bth greatest set-
ting of k for the term exp(Aik)myk(xi), where k #= j.
This compressed version of a message update can be
computed in O(bn) time.

We cannot efficiently reconstruct the entire belief vec-
tor but we can efficiently find its maximum.
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Finally, to maximize over xi we enumerate k and
greedily select the b largest values of exp(Aik)µ̂ykxi .

The above procedure avoids enumerating all
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en-
tries in the belief vector, and instead reshapes the dis-
tribution into a b dimensional hypercube. The maxi-
mum of the hypercube is found efficiently by searching
each dimension independently. Note that each dimen-
sion represents one of the b edges for node ui.

4 PROOF OF CONVERGENCE

We begin with the assumption that MG, the maxi-
mum weight b-matching on G, is unique. Moreover,
W(MG), the weight of MG, is greater than that of any
other matching by a constant ε.

ε = W(MG) − max
M !=MG

W(M)

Let T be the unwrapped graph of G from node ui. An
unwrapped graph is a tree that contains representa-
tions of all paths of length d in G originating from a
single root node without any backtracking. Each node
in T maps to a corresponding node in G, and each node
in G maps to multiple nodes in T . Nodes and edges in
T have the same local connectivity and potential func-
tions as their corresponding nodes in G. Let r be the
root of T that corresponds to ui in the original graph
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not feasible with larger graphs.
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This is because the ψ function changes based only on
whether the setting of yj indicates that vj shares an
edge with ui. Furthermore, if we redefine the above
message values as two scalars, we can write the mes-
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Second, since the messages are unnormalized proba-
bilities, we can divide any constant from the vectors
without changing the result. We divide all entries in
the message vector by νxiyj to get

µ̂xiyj =
µxiyj
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and ν̂xiyj = 1 .

This lossless compression scheme simplifies the storage
of message vectors from length
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to 1.

We rewrite the φ functions as a product of the expo-
nentiated Aij weights and eliminate the need to ex-
haustively maximize over all possible sets of size b. In-
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We cancel out common terms and are left with the
simple message update rule,

µ̂xiyj =
exp(Aij)

exp(Ai!)µ̂y!xi

.

Here, the index $ refers to the the bth greatest set-
ting of k for the term exp(Aik)myk(xi), where k #= j.
This compressed version of a message update can be
computed in O(bn) time.

We cannot efficiently reconstruct the entire belief vec-
tor but we can efficiently find its maximum.
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Finally, to maximize over xi we enumerate k and
greedily select the b largest values of exp(Aik)µ̂ykxi .

The above procedure avoids enumerating all
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tries in the belief vector, and instead reshapes the dis-
tribution into a b dimensional hypercube. The maxi-
mum of the hypercube is found efficiently by searching
each dimension independently. Note that each dimen-
sion represents one of the b edges for node ui.

4 PROOF OF CONVERGENCE

We begin with the assumption that MG, the maxi-
mum weight b-matching on G, is unique. Moreover,
W(MG), the weight of MG, is greater than that of any
other matching by a constant ε.

ε = W(MG) − max
M !=MG

W(M)

Let T be the unwrapped graph of G from node ui. An
unwrapped graph is a tree that contains representa-
tions of all paths of length d in G originating from a
single root node without any backtracking. Each node
in T maps to a corresponding node in G, and each node
in G maps to multiple nodes in T . Nodes and edges in
T have the same local connectivity and potential func-
tions as their corresponding nodes in G. Let r be the
root of T that corresponds to ui in the original graph



bth greatest setting 
of k for the term

Efficient Max-Product
After canceling terms message update simplifies to

                                            

and we maximize beliefs with

Both these updates take O(bn) time per vertex.

mxi(yj) =
1

Z
max

xi



φ(xi)ψ(xi, yj)
∏

k !=j

myk
(xi)





b(xi) =
1

Z
φ(xi)

∏

k

myk
(xi)

Loopy belief propagation on this graph converges to
the optimum. However, since there are

(

n
b

)

possible
settings for each variable, direct belief propagation is
not feasible with larger graphs.

3.2 EFFICIENT BELIEF PROPAGATION
OF

(

n
b

)

-LENGTH MESSAGE VECTORS

We exploit three peculiarities of the above formulation
to fully represent the

(n
b

)

length messages as scalars.

First, the ψ functions are well structured, and their
structure causes the maximization term in the message
updates to always be one of two values.

mxi(yj) ∝ max
vj∈xi

φ(xi)
∏

k !=j

myk
(xi), if ui ∈ yj

mxi(yj) ∝ max
vj /∈xi

φ(xi)
∏

k !=j

myk
(xi), if ui /∈ yj (4)

This is because the ψ function changes based only on
whether the setting of yj indicates that vj shares an
edge with ui. Furthermore, if we redefine the above
message values as two scalars, we can write the mes-
sages more specifically as

µxiyj ∝ max
vj∈xi

φ(xi)
∏

uk∈xi\vj

µki

∏

uk /∈xi\vj

νki

νxiyj ∝ max
vj /∈xi

φ(xi)
∏

uk∈xi\vj

µki

∏

uk /∈xi\vj

νki. (5)

Second, since the messages are unnormalized proba-
bilities, we can divide any constant from the vectors
without changing the result. We divide all entries in
the message vector by νxiyj to get

µ̂xiyj =
µxiyj

νxiyj

and ν̂xiyj = 1 .

This lossless compression scheme simplifies the storage
of message vectors from length

(

n
b

)

to 1.

We rewrite the φ functions as a product of the expo-
nentiated Aij weights and eliminate the need to ex-
haustively maximize over all possible sets of size b. In-
serting Equation (2) into the definition of µ̂xiyj gives

µ̂xiyj =
maxj∈xi φ(xi)

∏

k∈xi\j µ̂ki

maxj /∈xi
φ(xi)

∏

k∈xi\j µ̂ki

=
maxj∈xi

∏

k∈xi
exp(Aik)

∏

k∈xi\j µ̂ki

maxj /∈xi

∏

k∈xi
exp(Aik)

∏

k∈xi\j µ̂ki

=
exp(Aij)maxj∈xi

∏

k∈xi\j exp(Aik)µ̂ki

maxj /∈xi

∏

k∈xi
exp(Aij)µ̂ki

(6)

We cancel out common terms and are left with the
simple message update rule,

µ̂xiyj =
exp(Aij)

exp(Ai!)µ̂y!xi

.

Here, the index $ refers to the the bth greatest set-
ting of k for the term exp(Aik)myk(xi), where k #= j.
This compressed version of a message update can be
computed in O(bn) time.

We cannot efficiently reconstruct the entire belief vec-
tor but we can efficiently find its maximum.

max
xi

b(xi) ∝ max
xi

φ(xi)
∏

k∈xi

µ̂ykxi

∝ max
xi

∏

k∈xi

exp(Aik)µ̂ykxi (7)

Finally, to maximize over xi we enumerate k and
greedily select the b largest values of exp(Aik)µ̂ykxi .

The above procedure avoids enumerating all
(n

b

)

en-
tries in the belief vector, and instead reshapes the dis-
tribution into a b dimensional hypercube. The maxi-
mum of the hypercube is found efficiently by searching
each dimension independently. Note that each dimen-
sion represents one of the b edges for node ui.

4 PROOF OF CONVERGENCE

We begin with the assumption that MG, the maxi-
mum weight b-matching on G, is unique. Moreover,
W(MG), the weight of MG, is greater than that of any
other matching by a constant ε.

ε = W(MG) − max
M !=MG

W(M)

Let T be the unwrapped graph of G from node ui. An
unwrapped graph is a tree that contains representa-
tions of all paths of length d in G originating from a
single root node without any backtracking. Each node
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Assumptions:

- Optimal b-matching is unique.

- 

- Weights treated as constants.

ε =        difference between weight of best 
and 2nd best b-matching is constant.



Basic mechanism: Unwrapped Graph, T

Loopy Belief Propagation for Bipartite Maximum Weight b-Matching
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Abstract

We formulate the weighted b-matching ob-
jective function as a probability distribution
function and prove that belief propagation
(BP) on its graphical model converges to
the optimum. Standard BP on our graphi-
cal model cannot be computed in polynomial
time, but we introduce an algebraic method
to circumvent the combinatorial message up-
dates. Empirically, the resulting algorithm
is on average faster than popular combina-
torial implementations, while still scaling at
the same asymptotic rate of O(bn3). Further-
more, the algorithm shows promising perfor-
mance in machine learning applications.

1 INTRODUCTION

u1 u2 u3 u4

v1 v2 v3 v4

Figure 1: Example b-matching MG on a bipartite graph G.
Dashed lines represent possible edges, solid lines represent
b-matched edges. In this case b = 2.

2 EXPERIMENTS

We elaborate the speed advantages of our method and
an application in machine learning where b-matching
can improve classification accuracy.

2.1 RUNNING TIME ANALYSIS

We compare the performance of our implementation
of belief propagation maximum weighted b-matching

u1 u2 u3 u4

v1 v2 v3 v4

1,5 234 6

Figure 3: The cyclic alternating path PG starting at v1 on
G that corresponds to the nodes visited by PT . Edges are
numbered to help follow the loopy path.

against the free graph optimization package, GOBLIN.
1

Classical b-matching algorithms such as the balanced
network flow method used by the GOBLIN library run
in O(bn3) time [?]. The belief propagation method
takes O(bn) time to compute one iteration of message
updates for each of the 2n nodes and converges in O(n)
iterations. So, its overall running time is also O(bn3).

We ran both algorithms on randomly generated bipar-
tite graphs of 10 ≤ n ≤ 100 and 1 ≤ b ≤ n/2. We
generated the weight matrix with the rand function
in MATLAB, which picks each weight independently
from a uniform distribution between 0 and 1.

The GOBLIN library is C++ code and our implemen-
tation2 of belief propagation b-matching is in C. Both
were run on a 3.00 Ghz. Pentium 4 processor.

In general, the belief propagation runs hundreds of
times faster than GOBLIN. Figure 5 shows various
comparisons of their running times. The surface plots
show how the algorithms scale with respect to n and
b. The line plots show cross sections of these surface
plots, with appropriate transformations on the run-
ning time to show the scaling (without these transfor-
mations, the belief propagation line would appear to
be always zero due to the scale of the plot following

1Available at: http://www.math.uni-augsburg.de/opt/goblin.html
2Available at http://www.cs.columbia.edu/̃bert/bmatching
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1. Pick root node
2. Copy all neighbors
3. Continue but don’t backtrack
4. Continue to depth d
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Figure 2: Example unwrapped graph T of G at 3 iterations. The matching M̃T is highlighted based on MG from Figure
1. Note that leaf nodes cannot have perfect b-matchings, but all inner nodes and the root do. One possible path PT is
highlighted, which is discussed in Lemma ??.

. . .u2v2u4v1u1v3u4v1u3

First cycle

(a) PG

u4

v3u1

v1

(b) c1

. . .u2v2u4v1u3

(c) PG \ c1

Figure 4: (a) One possible extension of PG from Figure 1. This path comes from a deeper T so PG is longer. The first
cycle c1 detected is highlighted. (b) Cycle c1 from PG. (c) The remainder of PG when we remove c1. Note the alternation
of the matched edges remains consistent even when we cut out cycles in the interior of the path.

the GOBLIN line). Since both algorithms have run-
ning time O(bn3), when we fix b = 5, we get a cubic
curve. When we fix b = n/2, we get a quartic curve
because b becomes a function of n.
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Figure 5: Median running time in seconds on randomly
weighted graphs for the GOBLIN library and BP. Top Left:
BP median running time with respect to n, b. Bottom Left:
GOBLIN b-matching solver median running time over n,
b. Top Right: Cube root of running time ( 3

√
t) of both

algorithms when b = 3; note that both scale linearly in
this plot, implying a n3 term in running time for both.
Bottom Right: Root-4 ( 4

√
t) of running time for various n,

when b = "n/2#. Both algorithms have quartic running
time.

2.2 b-MATCHING FOR CLASSIFICATION

One natural application of b-matching is as an im-
provement over k-nearest neighbor (KNN) for classi-
fication. Using KNN for classification is a quick way
of computing a reasonable prediction of class, but it is
inherently greedy. The algorithm starts by computing
an affinity matrix between all data points. For each
test data point, KNN greedily selects its k neighbors
regardless of the connectivity or graph this may gener-
ate. This invariably leads to some nodes serving as hub
nodes and labeling too many unknown examples while
other training points are never used as neighbors.

Instead, using b-matching enforces uniform connectiv-
ity across the training and testing points. For exam-
ple, assume the number of testing points and training
points is the same and we perform b-matching. Then,
each testing point will be labeled by b training points
and each training point contributes to the labeling of
b testing points. This means b-matching will do a bet-
ter job of recreating the distribution of classes seen
in the training data when it classifies test data. This
is useful when test data is transformed in some way
that preserves the shape of the distribution, but it is
translated or scaled to confuse KNN. This can occur in
situations where training data comes from a different
source than the testing data.

In both algorithms, we compute a bipartite affinity
graph between a set of training points and a set of
testing points. We fix the cardinalities of these sets
to be equal (though if they are unequal we can down-
sample and run the algorithm in multiple folds to ob-
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plots, with appropriate transformations on the run-
ning time to show the scaling (without these transfor-
mations, the belief propagation line would appear to
be always zero due to the scale of the plot following

1Available at: http://www.math.uni-augsburg.de/opt/goblin.html
2Available at http://www.cs.columbia.edu/̃bert/bmatching
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ning time O(bn3), when we fix b = 5, we get a cubic
curve. When we fix b = n/2, we get a quartic curve
because b becomes a function of n.
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weighted graphs for the GOBLIN library and BP. Top Left:
BP median running time with respect to n, b. Bottom Left:
GOBLIN b-matching solver median running time over n,
b. Top Right: Cube root of running time ( 3

√
t) of both

algorithms when b = 3; note that both scale linearly in
this plot, implying a n3 term in running time for both.
Bottom Right: Root-4 ( 4
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t) of running time for various n,

when b = "n/2#. Both algorithms have quartic running
time.

2.2 b-MATCHING FOR CLASSIFICATION

One natural application of b-matching is as an im-
provement over k-nearest neighbor (KNN) for classi-
fication. Using KNN for classification is a quick way
of computing a reasonable prediction of class, but it is
inherently greedy. The algorithm starts by computing
an affinity matrix between all data points. For each
test data point, KNN greedily selects its k neighbors
regardless of the connectivity or graph this may gener-
ate. This invariably leads to some nodes serving as hub
nodes and labeling too many unknown examples while
other training points are never used as neighbors.

Instead, using b-matching enforces uniform connectiv-
ity across the training and testing points. For exam-
ple, assume the number of testing points and training
points is the same and we perform b-matching. Then,
each testing point will be labeled by b training points
and each training point contributes to the labeling of
b testing points. This means b-matching will do a bet-
ter job of recreating the distribution of classes seen
in the training data when it classifies test data. This
is useful when test data is transformed in some way
that preserves the shape of the distribution, but it is
translated or scaled to confuse KNN. This can occur in
situations where training data comes from a different
source than the testing data.

In both algorithms, we compute a bipartite affinity
graph between a set of training points and a set of
testing points. We fix the cardinalities of these sets
to be equal (though if they are unequal we can down-
sample and run the algorithm in multiple folds to ob-
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4. Continue to depth d
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Abstract

We formulate the weighted b-matching ob-
jective function as a probability distribution
function and prove that belief propagation
(BP) on its graphical model converges to
the optimum. Standard BP on our graphi-
cal model cannot be computed in polynomial
time, but we introduce an algebraic method
to circumvent the combinatorial message up-
dates. Empirically, the resulting algorithm
is on average faster than popular combina-
torial implementations, while still scaling at
the same asymptotic rate of O(bn3). Further-
more, the algorithm shows promising perfor-
mance in machine learning applications.

1 INTRODUCTION
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Figure 1: Example b-matching MG on a bipartite graph G.
Dashed lines represent possible edges, solid lines represent
b-matched edges. In this case b = 2.

2 EXPERIMENTS

We elaborate the speed advantages of our method and
an application in machine learning where b-matching
can improve classification accuracy.

2.1 RUNNING TIME ANALYSIS

We compare the performance of our implementation
of belief propagation maximum weighted b-matching
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Figure 3: The cyclic alternating path PG starting at v1 on
G that corresponds to the nodes visited by PT . Edges are
numbered to help follow the loopy path.

against the free graph optimization package, GOBLIN.
1

Classical b-matching algorithms such as the balanced
network flow method used by the GOBLIN library run
in O(bn3) time [?]. The belief propagation method
takes O(bn) time to compute one iteration of message
updates for each of the 2n nodes and converges in O(n)
iterations. So, its overall running time is also O(bn3).

We ran both algorithms on randomly generated bipar-
tite graphs of 10 ≤ n ≤ 100 and 1 ≤ b ≤ n/2. We
generated the weight matrix with the rand function
in MATLAB, which picks each weight independently
from a uniform distribution between 0 and 1.

The GOBLIN library is C++ code and our implemen-
tation2 of belief propagation b-matching is in C. Both
were run on a 3.00 Ghz. Pentium 4 processor.

In general, the belief propagation runs hundreds of
times faster than GOBLIN. Figure 5 shows various
comparisons of their running times. The surface plots
show how the algorithms scale with respect to n and
b. The line plots show cross sections of these surface
plots, with appropriate transformations on the run-
ning time to show the scaling (without these transfor-
mations, the belief propagation line would appear to
be always zero due to the scale of the plot following

1Available at: http://www.math.uni-augsburg.de/opt/goblin.html
2Available at http://www.cs.columbia.edu/̃bert/bmatching
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the GOBLIN line). Since both algorithms have run-
ning time O(bn3), when we fix b = 5, we get a cubic
curve. When we fix b = n/2, we get a quartic curve
because b becomes a function of n.
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when b = "n/2#. Both algorithms have quartic running
time.

2.2 b-MATCHING FOR CLASSIFICATION

One natural application of b-matching is as an im-
provement over k-nearest neighbor (KNN) for classi-
fication. Using KNN for classification is a quick way
of computing a reasonable prediction of class, but it is
inherently greedy. The algorithm starts by computing
an affinity matrix between all data points. For each
test data point, KNN greedily selects its k neighbors
regardless of the connectivity or graph this may gener-
ate. This invariably leads to some nodes serving as hub
nodes and labeling too many unknown examples while
other training points are never used as neighbors.

Instead, using b-matching enforces uniform connectiv-
ity across the training and testing points. For exam-
ple, assume the number of testing points and training
points is the same and we perform b-matching. Then,
each testing point will be labeled by b training points
and each training point contributes to the labeling of
b testing points. This means b-matching will do a bet-
ter job of recreating the distribution of classes seen
in the training data when it classifies test data. This
is useful when test data is transformed in some way
that preserves the shape of the distribution, but it is
translated or scaled to confuse KNN. This can occur in
situations where training data comes from a different
source than the testing data.

In both algorithms, we compute a bipartite affinity
graph between a set of training points and a set of
testing points. We fix the cardinalities of these sets
to be equal (though if they are unequal we can down-
sample and run the algorithm in multiple folds to ob-

1. Pick root node
2. Copy all neighbors
3. Continue but don’t backtrack
4. Continue to depth d



Convergence Proof Sketch

Basic mechanism: Unwrapped Graph, T

Loopy Belief Propagation for Bipartite Maximum Weight b-Matching

Bert Huang

Computer Science Dept.
Columbia University
New York, NY 10027

Tony Jebara

Computer Science Dept.
Columbia University
New York, NY 10027

Abstract

We formulate the weighted b-matching ob-
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function and prove that belief propagation
(BP) on its graphical model converges to
the optimum. Standard BP on our graphi-
cal model cannot be computed in polynomial
time, but we introduce an algebraic method
to circumvent the combinatorial message up-
dates. Empirically, the resulting algorithm
is on average faster than popular combina-
torial implementations, while still scaling at
the same asymptotic rate of O(bn3). Further-
more, the algorithm shows promising perfor-
mance in machine learning applications.

1 INTRODUCTION
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Dashed lines represent possible edges, solid lines represent
b-matched edges. In this case b = 2.

2 EXPERIMENTS

We elaborate the speed advantages of our method and
an application in machine learning where b-matching
can improve classification accuracy.

2.1 RUNNING TIME ANALYSIS

We compare the performance of our implementation
of belief propagation maximum weighted b-matching
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G that corresponds to the nodes visited by PT . Edges are
numbered to help follow the loopy path.

against the free graph optimization package, GOBLIN.
1

Classical b-matching algorithms such as the balanced
network flow method used by the GOBLIN library run
in O(bn3) time [?]. The belief propagation method
takes O(bn) time to compute one iteration of message
updates for each of the 2n nodes and converges in O(n)
iterations. So, its overall running time is also O(bn3).

We ran both algorithms on randomly generated bipar-
tite graphs of 10 ≤ n ≤ 100 and 1 ≤ b ≤ n/2. We
generated the weight matrix with the rand function
in MATLAB, which picks each weight independently
from a uniform distribution between 0 and 1.

The GOBLIN library is C++ code and our implemen-
tation2 of belief propagation b-matching is in C. Both
were run on a 3.00 Ghz. Pentium 4 processor.

In general, the belief propagation runs hundreds of
times faster than GOBLIN. Figure 5 shows various
comparisons of their running times. The surface plots
show how the algorithms scale with respect to n and
b. The line plots show cross sections of these surface
plots, with appropriate transformations on the run-
ning time to show the scaling (without these transfor-
mations, the belief propagation line would appear to
be always zero due to the scale of the plot following

1Available at: http://www.math.uni-augsburg.de/opt/goblin.html
2Available at http://www.cs.columbia.edu/̃bert/bmatching
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the GOBLIN line). Since both algorithms have run-
ning time O(bn3), when we fix b = 5, we get a cubic
curve. When we fix b = n/2, we get a quartic curve
because b becomes a function of n.
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weighted graphs for the GOBLIN library and BP. Top Left:
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GOBLIN b-matching solver median running time over n,
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algorithms when b = 3; note that both scale linearly in
this plot, implying a n3 term in running time for both.
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√
t) of running time for various n,

when b = "n/2#. Both algorithms have quartic running
time.

2.2 b-MATCHING FOR CLASSIFICATION

One natural application of b-matching is as an im-
provement over k-nearest neighbor (KNN) for classi-
fication. Using KNN for classification is a quick way
of computing a reasonable prediction of class, but it is
inherently greedy. The algorithm starts by computing
an affinity matrix between all data points. For each
test data point, KNN greedily selects its k neighbors
regardless of the connectivity or graph this may gener-
ate. This invariably leads to some nodes serving as hub
nodes and labeling too many unknown examples while
other training points are never used as neighbors.

Instead, using b-matching enforces uniform connectiv-
ity across the training and testing points. For exam-
ple, assume the number of testing points and training
points is the same and we perform b-matching. Then,
each testing point will be labeled by b training points
and each training point contributes to the labeling of
b testing points. This means b-matching will do a bet-
ter job of recreating the distribution of classes seen
in the training data when it classifies test data. This
is useful when test data is transformed in some way
that preserves the shape of the distribution, but it is
translated or scaled to confuse KNN. This can occur in
situations where training data comes from a different
source than the testing data.

In both algorithms, we compute a bipartite affinity
graph between a set of training points and a set of
testing points. We fix the cardinalities of these sets
to be equal (though if they are unequal we can down-
sample and run the algorithm in multiple folds to ob-
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Basic mechanism: Unwrapped Graph, T

- Construction follows loopy BP messages 
in reverse.

- True max-marginals of root node are 
exactly belief at iteration d.

- Max of unwrapped graph distribution is 
the maximum weight b-matching on tree.
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Proof by contradiction:

What happens if optimal b-matching on T 
differs from optimal b-matching on G at root?
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Figure 2: Example unwrapped graph T of G at 3 iterations. The matching M̃T is highlighted based on MG from Figure
1. Note that leaf nodes cannot have perfect b-matchings, but all inner nodes and the root do. One possible path PT is
highlighted, which is discussed in Lemma ??.
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because b becomes a function of n.
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when b = "n/2#. Both algorithms have quartic running
time.

2.2 b-MATCHING FOR CLASSIFICATION

One natural application of b-matching is as an im-
provement over k-nearest neighbor (KNN) for classi-
fication. Using KNN for classification is a quick way
of computing a reasonable prediction of class, but it is
inherently greedy. The algorithm starts by computing
an affinity matrix between all data points. For each
test data point, KNN greedily selects its k neighbors
regardless of the connectivity or graph this may gener-
ate. This invariably leads to some nodes serving as hub
nodes and labeling too many unknown examples while
other training points are never used as neighbors.

Instead, using b-matching enforces uniform connectiv-
ity across the training and testing points. For exam-
ple, assume the number of testing points and training
points is the same and we perform b-matching. Then,
each testing point will be labeled by b training points
and each training point contributes to the labeling of
b testing points. This means b-matching will do a bet-
ter job of recreating the distribution of classes seen
in the training data when it classifies test data. This
is useful when test data is transformed in some way
that preserves the shape of the distribution, but it is
translated or scaled to confuse KNN. This can occur in
situations where training data comes from a different
source than the testing data.

In both algorithms, we compute a bipartite affinity
graph between a set of training points and a set of
testing points. We fix the cardinalities of these sets
to be equal (though if they are unequal we can down-
sample and run the algorithm in multiple folds to ob-
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because b becomes a function of n.
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when b = "n/2#. Both algorithms have quartic running
time.

2.2 b-MATCHING FOR CLASSIFICATION

One natural application of b-matching is as an im-
provement over k-nearest neighbor (KNN) for classi-
fication. Using KNN for classification is a quick way
of computing a reasonable prediction of class, but it is
inherently greedy. The algorithm starts by computing
an affinity matrix between all data points. For each
test data point, KNN greedily selects its k neighbors
regardless of the connectivity or graph this may gener-
ate. This invariably leads to some nodes serving as hub
nodes and labeling too many unknown examples while
other training points are never used as neighbors.

Instead, using b-matching enforces uniform connectiv-
ity across the training and testing points. For exam-
ple, assume the number of testing points and training
points is the same and we perform b-matching. Then,
each testing point will be labeled by b training points
and each training point contributes to the labeling of
b testing points. This means b-matching will do a bet-
ter job of recreating the distribution of classes seen
in the training data when it classifies test data. This
is useful when test data is transformed in some way
that preserves the shape of the distribution, but it is
translated or scaled to confuse KNN. This can occur in
situations where training data comes from a different
source than the testing data.

In both algorithms, we compute a bipartite affinity
graph between a set of training points and a set of
testing points. We fix the cardinalities of these sets
to be equal (though if they are unequal we can down-
sample and run the algorithm in multiple folds to ob-
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GOBLIN b-matching solver median running time over n,
b. Top Right: Cube root of running time ( 3
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t) of both

algorithms when b = 3; note that both scale linearly in
this plot, implying a n3 term in running time for both.
Bottom Right: Root-4 ( 4
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t) of running time for various n,

when b = "n/2#. Both algorithms have quartic running
time.

2.2 b-MATCHING FOR CLASSIFICATION

One natural application of b-matching is as an im-
provement over k-nearest neighbor (KNN) for classi-
fication. Using KNN for classification is a quick way
of computing a reasonable prediction of class, but it is
inherently greedy. The algorithm starts by computing
an affinity matrix between all data points. For each
test data point, KNN greedily selects its k neighbors
regardless of the connectivity or graph this may gener-
ate. This invariably leads to some nodes serving as hub
nodes and labeling too many unknown examples while
other training points are never used as neighbors.

Instead, using b-matching enforces uniform connectiv-
ity across the training and testing points. For exam-
ple, assume the number of testing points and training
points is the same and we perform b-matching. Then,
each testing point will be labeled by b training points
and each training point contributes to the labeling of
b testing points. This means b-matching will do a bet-
ter job of recreating the distribution of classes seen
in the training data when it classifies test data. This
is useful when test data is transformed in some way
that preserves the shape of the distribution, but it is
translated or scaled to confuse KNN. This can occur in
situations where training data comes from a different
source than the testing data.

In both algorithms, we compute a bipartite affinity
graph between a set of training points and a set of
testing points. We fix the cardinalities of these sets
to be equal (though if they are unequal we can down-
sample and run the algorithm in multiple folds to ob-
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Figure 2: Example unwrapped graph T of G at 3 iterations. The matching M̃T is highlighted based on MG from Figure
1. Note that leaf nodes cannot have perfect b-matchings, but all inner nodes and the root do. One possible path PT is
highlighted, which is discussed in Lemma ??.
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Figure 4: (a) One possible extension of PG from Figure 1. This path comes from a deeper T so PG is longer. The first
cycle c1 detected is highlighted. (b) Cycle c1 from PG. (c) The remainder of PG when we remove c1. Note the alternation
of the matched edges remains consistent even when we cut out cycles in the interior of the path.
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2.2 b-MATCHING FOR CLASSIFICATION

One natural application of b-matching is as an im-
provement over k-nearest neighbor (KNN) for classi-
fication. Using KNN for classification is a quick way
of computing a reasonable prediction of class, but it is
inherently greedy. The algorithm starts by computing
an affinity matrix between all data points. For each
test data point, KNN greedily selects its k neighbors
regardless of the connectivity or graph this may gener-
ate. This invariably leads to some nodes serving as hub
nodes and labeling too many unknown examples while
other training points are never used as neighbors.

Instead, using b-matching enforces uniform connectiv-
ity across the training and testing points. For exam-
ple, assume the number of testing points and training
points is the same and we perform b-matching. Then,
each testing point will be labeled by b training points
and each training point contributes to the labeling of
b testing points. This means b-matching will do a bet-
ter job of recreating the distribution of classes seen
in the training data when it classifies test data. This
is useful when test data is transformed in some way
that preserves the shape of the distribution, but it is
translated or scaled to confuse KNN. This can occur in
situations where training data comes from a different
source than the testing data.

In both algorithms, we compute a bipartite affinity
graph between a set of training points and a set of
testing points. We fix the cardinalities of these sets
to be equal (though if they are unequal we can down-
sample and run the algorithm in multiple folds to ob-
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2.2 b-MATCHING FOR CLASSIFICATION

One natural application of b-matching is as an im-
provement over k-nearest neighbor (KNN) for classi-
fication. Using KNN for classification is a quick way
of computing a reasonable prediction of class, but it is
inherently greedy. The algorithm starts by computing
an affinity matrix between all data points. For each
test data point, KNN greedily selects its k neighbors
regardless of the connectivity or graph this may gener-
ate. This invariably leads to some nodes serving as hub
nodes and labeling too many unknown examples while
other training points are never used as neighbors.

Instead, using b-matching enforces uniform connectiv-
ity across the training and testing points. For exam-
ple, assume the number of testing points and training
points is the same and we perform b-matching. Then,
each testing point will be labeled by b training points
and each training point contributes to the labeling of
b testing points. This means b-matching will do a bet-
ter job of recreating the distribution of classes seen
in the training data when it classifies test data. This
is useful when test data is transformed in some way
that preserves the shape of the distribution, but it is
translated or scaled to confuse KNN. This can occur in
situations where training data comes from a different
source than the testing data.

In both algorithms, we compute a bipartite affinity
graph between a set of training points and a set of
testing points. We fix the cardinalities of these sets
to be equal (though if they are unequal we can down-
sample and run the algorithm in multiple folds to ob-
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when b = "n/2#. Both algorithms have quartic running
time.

2.2 b-MATCHING FOR CLASSIFICATION

One natural application of b-matching is as an im-
provement over k-nearest neighbor (KNN) for classi-
fication. Using KNN for classification is a quick way
of computing a reasonable prediction of class, but it is
inherently greedy. The algorithm starts by computing
an affinity matrix between all data points. For each
test data point, KNN greedily selects its k neighbors
regardless of the connectivity or graph this may gener-
ate. This invariably leads to some nodes serving as hub
nodes and labeling too many unknown examples while
other training points are never used as neighbors.

Instead, using b-matching enforces uniform connectiv-
ity across the training and testing points. For exam-
ple, assume the number of testing points and training
points is the same and we perform b-matching. Then,
each testing point will be labeled by b training points
and each training point contributes to the labeling of
b testing points. This means b-matching will do a bet-
ter job of recreating the distribution of classes seen
in the training data when it classifies test data. This
is useful when test data is transformed in some way
that preserves the shape of the distribution, but it is
translated or scaled to confuse KNN. This can occur in
situations where training data comes from a different
source than the testing data.

In both algorithms, we compute a bipartite affinity
graph between a set of training points and a set of
testing points. We fix the cardinalities of these sets
to be equal (though if they are unequal we can down-
sample and run the algorithm in multiple folds to ob-
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2.2 b-MATCHING FOR CLASSIFICATION

One natural application of b-matching is as an im-
provement over k-nearest neighbor (KNN) for classi-
fication. Using KNN for classification is a quick way
of computing a reasonable prediction of class, but it is
inherently greedy. The algorithm starts by computing
an affinity matrix between all data points. For each
test data point, KNN greedily selects its k neighbors
regardless of the connectivity or graph this may gener-
ate. This invariably leads to some nodes serving as hub
nodes and labeling too many unknown examples while
other training points are never used as neighbors.

Instead, using b-matching enforces uniform connectiv-
ity across the training and testing points. For exam-
ple, assume the number of testing points and training
points is the same and we perform b-matching. Then,
each testing point will be labeled by b training points
and each training point contributes to the labeling of
b testing points. This means b-matching will do a bet-
ter job of recreating the distribution of classes seen
in the training data when it classifies test data. This
is useful when test data is transformed in some way
that preserves the shape of the distribution, but it is
translated or scaled to confuse KNN. This can occur in
situations where training data comes from a different
source than the testing data.

In both algorithms, we compute a bipartite affinity
graph between a set of training points and a set of
testing points. We fix the cardinalities of these sets
to be equal (though if they are unequal we can down-
sample and run the algorithm in multiple folds to ob-
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u1

v1 v2 v3 v4

u2 u2 u2 u2u3 u3 u3 u3u4 u4 u4 u4

v2 v3 v4 v2 v3 v4 v2 v3 v4 v1 v3 v4 v1 v3 v4 v1 v3 v4 v1 v2 v4 v1 v2 v4 v1 v2 v4 v1 v2 v3 v1 v2 v3 v1 v2 v3

Figure 2: Example unwrapped graph T of G at 3 iterations. The matching M̃T is highlighted based on MG from Figure
1. Note that leaf nodes cannot have perfect b-matchings, but all inner nodes and the root do. One possible path PT is
highlighted, which is discussed in Lemma ??.
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cycle c1 detected is highlighted. (b) Cycle c1 from PG. (c) The remainder of PG when we remove c1. Note the alternation
of the matched edges remains consistent even when we cut out cycles in the interior of the path.
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curve. When we fix b = n/2, we get a quartic curve
because b becomes a function of n.
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2.2 b-MATCHING FOR CLASSIFICATION

One natural application of b-matching is as an im-
provement over k-nearest neighbor (KNN) for classi-
fication. Using KNN for classification is a quick way
of computing a reasonable prediction of class, but it is
inherently greedy. The algorithm starts by computing
an affinity matrix between all data points. For each
test data point, KNN greedily selects its k neighbors
regardless of the connectivity or graph this may gener-
ate. This invariably leads to some nodes serving as hub
nodes and labeling too many unknown examples while
other training points are never used as neighbors.

Instead, using b-matching enforces uniform connectiv-
ity across the training and testing points. For exam-
ple, assume the number of testing points and training
points is the same and we perform b-matching. Then,
each testing point will be labeled by b training points
and each training point contributes to the labeling of
b testing points. This means b-matching will do a bet-
ter job of recreating the distribution of classes seen
in the training data when it classifies test data. This
is useful when test data is transformed in some way
that preserves the shape of the distribution, but it is
translated or scaled to confuse KNN. This can occur in
situations where training data comes from a different
source than the testing data.

In both algorithms, we compute a bipartite affinity
graph between a set of training points and a set of
testing points. We fix the cardinalities of these sets
to be equal (though if they are unequal we can down-
sample and run the algorithm in multiple folds to ob-
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graph optimization library.
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Experiments

Running time comparison against GOBLIN 
graph optimization library.
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Figure 4: (a) One possible extension of PG from Figure 4. This path comes from a deeper T so PG is longer. The first
cycle c1 detected is highlighted. (b) Cycle c1 from PG. (c) The remainder of PG when we remove c1. Note the alternation
of the matched edges remains consistent even when we cut out cycles in the interior of the path.

with edges in PT toggled, that has a higher weight
than MT . This should be impossible because MT is
defined as the optimal b-matching. This occurs when

d ≥
n

ε

(

max
e1,e2∈E

W(e1) −W(e2)

)

.

We can consider ε and the maximum difference be-
tween weights as constants. If d = Ω(n), Contradic-
tion 1 always leads to this impossible circumstance,
and therefore Theorem 1 is true.

The bound in this proof is for the worst-case. In our
experiments, the maximum and minimum weights had
little effect and the ε term only changed convergence
time noticeably if its value was near zero. Due to finite
numerical precision, this may appear as a tie between
different settings, which often causes BP to fail [11].

5 EXPERIMENTS

We elaborate the speed advantages of our method and
an application in machine learning where b-matching
can improve classification accuracy.

5.1 RUNNING TIME ANALYSIS

We compare the performance of our implementation
of belief propagation maximum weighted b-matching
against the free graph optimization package, GOBLIN.
1

Classical b-matching algorithms such as the balanced
network flow method used by the GOBLIN library run
in O(bn3) time [2]. The belief propagation method
takes O(bn) time to compute one iteration of message
updates for each of the 2n nodes and converges in O(n)
iterations. So, its overall running time is also O(bn3).

We ran both algorithms on randomly generated bipar-
tite graphs of 10 ≤ n ≤ 100 and 1 ≤ b ≤ n/2. We
generated the weight matrix with the rand function
in MATLAB, which picks each weight independently
from a uniform distribution between 0 and 1.

1Available at: http://www.math.uni-augsburg.de/opt/goblin.html

The GOBLIN library is C++ code and our implemen-
tation2 of belief propagation b-matching is in C. Both
were run on a 3.00 Ghz. Pentium 4 processor.

In general, the belief propagation runs hundreds of
times faster than GOBLIN. Figure 5 shows various
comparisons of their running times. The surface plots
show how the algorithms scale with respect to n and
b. The line plots show cross sections of these surface
plots, with appropriate transformations on the run-
ning time to show the scaling (without these transfor-
mations, the belief propagation line would appear to
be always zero due to the scale of the plot following
the GOBLIN line). Since both algorithms have run-
ning time O(bn3), when we fix b = 5, we get a cubic
curve. When we fix b = n/2, we get a quartic curve
because b becomes a function of n.
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Figure 5: Median running time in seconds on randomly
weighted graphs for the GOBLIN library and BP. Top Left:
BP median running time with respect to n, b. Bottom Left:
GOBLIN b-matching solver median running time over n,
b. Top Right: Cube root of running time ( 3

√
t) of both

algorithms when b = 3; note that both scale linearly in
this plot, implying a n3 term in running time for both.
Bottom Right: Root-4 ( 4

√
t) of running time for various n,

when b = "n/2#. Both algorithms have quartic running
time.

2Available at http://www.cs.columbia.edu/̃bert/bmatching



Experiments: Translated Test Data
On toy data, translation cripples KNN but     
b-matching makes no classification errors.

u1 u2 u3 u4

v1 v2 v3 v4

1,5 234 6

Figure 5: The cyclic alternating path PG starting at v1 on
G that corresponds to the nodes visited by PT . Edges are
numbered to help follow the loopy path.
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of computing a reasonable prediction of class, but it is
inherently greedy. The algorithm starts by computing
an affinity matrix between all data points. For each
test data point, KNN greedily selects its k neighbors
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nodes and labeling too many unknown examples while
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ter job of recreating the distribution of classes seen
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translated or scaled to confuse KNN. This can occur in
situations where training data comes from a different
source than the testing data.

In both algorithms, we compute a bipartite affinity
graph between a set of training points and a set of
testing points. We fix the cardinalities of these sets
to be equal (though if they are unequal we can down-
sample and run the algorithm in multiple folds to ob-
tain classifications). We use either KNN or weighted
b-matching to prune the graph, then we classify each
test point based on the majority of the classes of the
neighbors. In our experiments, we use negative Eu-
clidean distance as our affinity metric.

2.2.1 Synthetic Data

We created synthetic data by sampling 50 training
data points from two spherical Gaussians with means
at (3, 3) and (−3,−3). We then sampled 50 testing
data points from similar Gaussians, but translated
along the x-axis by +8. This is a severe case of trans-
lation where it is obvious that KNN could be fooled by
the proximity of the testing Gaussian to the training
Gaussian of the wrong class. Figure 7 shows the points
we sampled from this setup. As expected, KNN could
only achieve 65% accuracy on this data for the opti-
mal setting of k, while b-matching classified the points
perfectly for all settings of b.

2.2.2 MNIST Digits With Backgrounds

We sampled the MNIST digits dataset of 28 × 28
grayscale digits. For each of the digits 3, 5, and 8,
we sampled 100 training points from the training set
and 100 from the testing set. We average accuracy
over 20 random samplings to avoid anomalous results.
We cross-validate over settings of b and k in the range
[1, 300] and save the best accuracy achieved for each
algorithm on each sampling.

We examine the case where training and testing data
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Experiments
MNIST Digits with pseudo-translation

- Image data with background changes is 
like translation. 

- Train on MNIST digits 3, 5, and 8.

- Test on new examples with various 
“bluescreen” textures.

lem. We provided an efficient method to update the
(
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)

-length messages. The practical running time of
this algorithm is hundreds of times faster than the
classical implementations we have found. This makes
b-matching a more practical tool in machine learning
settings and lets us tackle significantly larger datasets.

Furthermore, by formulating weighted b-matching in
this manner, we can take advantage of the inherent
parallel computation of belief propagation. In addi-
tion to the empirical evidence of a faster constant on
the asymptotic running time, the procedure could be
distributed over a number of machines. For example,
n servers and n clients could run this algorithm in par-
allel to optimize throughput.

Theoretically, the convergence of loopy BP on this
graph and the ability to update the

(n
b

)

length mes-
sages are pleasant surprises. We have tried to gen-
eralize this method to all graph structures, not just
bipartite graphs, but found that there were cases that
led to oscillation in the belief updates. This is due to
the fact that cycles can be both even and odd in gen-
eral graphs. Generalizing to such cases is one future
direction for this work.

In addition to being limited to bipartite graphs, be-
lief propagation methods have difficulty with functions
that have multiple solutions. This is why we assume
there is a unique solution in the proof. In a way, our
convergence bound still holds when there are multi-
ple solutions, in the sense that the ε value is in the
denominator, so the limit as ε goes to zero implies
infinite iterations to convergence. Belief propagation
cannot handle these ties in the function due to the fact
that the information being passed between variables is
only the maximum value, and no information about
the actual variable values is sent. Therefore, the al-
gorithm has no mechanism to distinguish between one
maximum and the other. We are currently investi-
gating if tree-based reparameterization techniques or
other graphical model inference methods can solve the
multiple-optimum or non-bipartite b-matching cases.
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Discussion

Provably convergent belief propagation for a 
new type of graph (b-matchings). 
+ Empirically faster than previous algorithms.
+ Parallelizeable
- Only bipartite case.
- Requires unique maximum.
Interesting theoretical results coming out of 
sum-product for approximating marginals.


