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Learning with Incomplete Data

An elegant method to handle missing data when performing density estimation
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Learn only from data we know

Algorithm Derivation

Maximum Entropy: use probability distribution with maximum entropy

Standard Maxent:
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Our simple 1dea: redefine missingness-aware expectation as
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(1.e., exclude missing values from expectation and renormalize)

New Maxent:

Dual Formulation
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Motivation

Just impute values for the missing data and
learn assuming the imputed values

Maximum entropy sounds great, but

Methods Being Compared
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\ Isn't there another way...?

Missingness and Expectations
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H(p) | entropy of distribution p

7’th feature for example x

is known for example x

empirical average for j’'th feature
B, (user-defined) allowed expectation deviation
indicator of whether j’th feature

@

* Following the Maximum Entropy Principle compels us to avoid assumptions

I.e., a real expectation over the naturally occurring distribution

Imputed expectations inject artificial features g;(x) when data is missing.

When missing data 1s
mostly not positive,

Mean (all) more

accurately imputes and
results in better learning

* We cannot afford to assume we know missing values, even after clever imputation

where p(Oj(x)) and p(Oj(x)Ix) represent the statistical missingness setting.

log-likelihood

The missingness-aware expectation can also be written as: Z p(x|oj(x))fi(x).
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Abbreviation | Method
Missing Our method
Mean (all) mean imputation to

mean of all examples
mean imputation to mean
of positive examples
M (Gaussian Expectation-

Maximization imputation

Real Data

Synthetic Data: Missingness Tests

Missing Mean (all) Mean (positive) EM
MCAR | -261.96 + 3.04 -262.02 £ 2.99 -262.07 &+ 3.05 -262.04 £+ 3.05
MAR -258.58 £ 3.90 -258.70 &£ 3.88  -258.75 = 4.01 -258.63 £ 3.86
NMAR | -258.79 +£ 4.02 -259.05 £ 4.01 -258.88 &+ 4.22  -259.04 £+ 4.00
Full -254.99 4+ 3.30
e Sampled to sitmulate missingness settings

Missingness Settings

Our approach: highest average out-of-sample likelihood over 5000 synthetic sets

Abbreviation | Definition
MCAR Missing completely at random; missingness is #id
MAR Missing at random; missingness depends on observable features
NMAR Not missing at random; missingness depends on missing features

Missing Mean (all)  Mean (positive) EM p(o) p(ylo)
bands -711.1+2.9 —711.5 £ 2.8 -710.8+£2.7 —711.5 4+ 2.8 0.92 0.87
Crx -991.0x3.2 -990.9+3.2 -991.0=3.2 -990.8+3.3 | 0.99 0.42
echo -57.2+1.1 —57.3 1.1 -57.1+1.0 —57.4+1.0 0.92 0.32
:Tlep -74.8+2.6 —75.4 1+ 2.5 —75.21+ 2.3 -75.1£2.5 0.90 0.27
horse-colic -299.3+2.9 —300.1 = 2.9 —304.7 £ 2.2 -299.6+2.7 0.066 0.38
house-votes | -555.1+£2.8 -555.1£2.8 -555.1+2.5 -555.0+£2.8 | 0.91  0.42

» UCI data sets with real missing values, run over 500 random training/testing splits
* Chose regularizer via cross-validation, out-of-sample log likelihoods reported in table
* Algorithms use the least complete half of the teatures (to exacerbate missingness)

e Best and

Synthetic Data: Imputation Quality Tests

not-statistically worse in bold (via 2-sample t-test with %35 rejection)
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Our method 1s never the worst-case; it never presumes to know
the missing values so it won't guess wrong on them!




