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Abstract

Curation of large fully supervised datasets has be-
come one of the major roadblocks for machine
learning. Weak supervision provides an alterna-
tive to supervised learning by training with cheap,
noisy, and possibly correlated labeling functions
from varying sources. The key challenge in weakly
supervised learning is combining the different
weak supervision signals while navigating mislead-
ing correlations in their errors. In this paper, we
propose a simple data-free approach for combin-
ing weak supervision signals by defining a con-
strained space for the possible labels of the weak
signals and training with a random labeling within
this constrained space. Our method is efficient and
stable, converging after a few iterations of gradi-
ent descent. We prove theoretical conditions under
which the worst-case error of the randomized label
decreases with the rank of the linear constraints.
We show experimentally that our method outper-
forms other weak supervision methods on various
text- and image-classification tasks.

1 INTRODUCTION

Recent successful demonstrations of machine learning have
created an explosion of interest. The key driver of these
successes is the progress in deep learning. Researchers in
different fields and industries are applying deep learning to
their work with varying degrees of success. Training deep
learning models typically requires massive amounts of data,
and in most cases this data needs to be labeled for supervised
learning. The process of collecting labels for large training
datasets is often expensive and can be a major bottleneck
for practical machine learning.

To enable machine learning when labeled data is not avail-
able, researchers are increasingly turning to weak supervi-

sion. Weakly supervised learning involves training models
using noisy labels. Using multiple sources or forms of weak
supervision is common, as it provides diverse information
to the model. However, each source of weak supervision has
its own bias that can be transmitted to the model. Different
weak supervision signals can also conflict, overlap, or—in
the worst case—make dependent errors. Thus, a naive com-
bination of these weak signals would hurt the quality of
a learned model. The key problem then is how to reliably
combine various sources of weak signals to train an accurate
model.

To solve this problem, we propose constrained label learn-
ing (CLL), a method that processes various weak supervi-
sion signals and combines them to produce high-quality
training labels. The idea behind CLL is that, given the weak
supervision, we can define a constrained space for the labels
of the unlabeled examples. The space will contain the true
labels of the data, and any other label sampled from the
space should be sufficient to train a model. We construct
this space using the expected error of the weak supervision
signals, and then we select a random vector from this space
to use as training labels. Our analysis shows that, the space
of labels considered by CLL improves to be tighter around
the true labels as we include more information in the weak
signals and that CLL is not confounded by redundant weak
signals.

CLL takes as input (1) a set of unlabeled data examples,
(2) multiple weak supervision signals that label a subset
of data and can abstain from labeling the rest, and (3) a
corresponding set of expected error rates for the weak su-
pervision signals. While the weak supervision signals can
abstain on various examples, we require that the combina-
tion of the weak signals have full coverage on the training
data. The expected error rates can be estimated if the weak
supervision signals have been tested on historical data or a
domain expert has knowledge about their performance. In
cases where the expected error rates are unavailable, they
can be treated as a hyperparameter. Our experiments in Sec-
tion 3.3 show that CLL is still effective when it is trained
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with a loose estimate of the weak signals. Alternatively, we
provide guidelines on how error rates can be estimated.

We implement CLL as a stable, quickly converging, con-
vex optimization over the candidate labels. CLL thus scales
much better than many other weak supervision methods.
We show in Section 4 experiments that compare the per-
formance of CLL to other weak supervision methods. On
a synthetic dataset, CLL trained with a constant error rate
is only a few percentage points from matching the perfor-
mance of supervised learning on a test set. On real text
and image classification tasks, CLL achieves superior per-
formance over existing weak supervision methods on test
data.

2 RELATED WORK

Weakly supervised learning has gained prominence in re-
cent years due to the need to train models without access to
manually labeled data. The recent success of deep learning
has exacerbated the need for large-scale data annotation,
which can be prohibitively expensive. One weakly super-
vised paradigm, data programming, allows users to define
labeling functions that noisily label a set of unlabeled data
Bach et al. [2019], Ratner et al. [2017, 2016]. Data program-
ming then combines the noisy labels to form probabilistic
labels for the data by using a generative model to estimate
the accuracies and dependencies of the noisy/weak supervi-
sion signals. This approach underlies the popular software
package Snorkel Ratner et al. [2017]. Our method is related
to this approach in that we use different weak signal sources
and compile them into a single (soft) labeling. However, un-
like Snorkel’s methods, we do not train a generative model
and avoid the need for probabilistic modeling assumptions.
Recently, Snorkel MeTaL was proposed for solving multi-
task learning problems with hierarchical structure Ratner
et al. [2018]. A user provides weak supervision for the hi-
erarchy of tasks which is then combined in an end-to-end
framework.

Another recently developed approach for weakly supervised
learning is adversarial label learning (ALL) Arachie and
Huang [2019b]. ALL was developed for training binary
classifiers from weak supervision. ALL trains a model to
perform well in the worst case for the weak supervision
by simultaneously optimizing model parameters and ad-
versarial labels for the training data in order to satisfy the
constraint that the error of the weak signals on the adver-
sarial labels be within provided error bounds. The authors
also recently proposed Stoch-GALL Arachie and Huang
[2019a], an extension for multi-class classification that in-
corporates precision bounds. Our work is related to ALL
and Stoch-GALL in that we use the same error definition
the authors introduced. However, the expected errors we
use do not serve as upper bound constraints for the weak
signals. Additionally, CLL avoids the adversarial setting

that requires unstable simultaneous optimization of the esti-
mated labels and the model parameters. Lastly, while ALL
and Stoch-GALL require weak supervision signals to label
every example, we allow for weak supervision signals that
abstain on different data subsets.

Crowdsourcing has become relevant to machine learning
practitioners as it provide a means to train machine learning
models using labels collected from different crowd workers
Carpenter [2008], Gao et al. [2011], Karger et al. [2011],
Khetan et al. [2017], Liu et al. [2012], Platanios et al. [2020],
Zhou et al. [2015], Zhou and He [2016]. The key machine
learning challenge when crowdsourcing is to effectively
combine the different labels obtained from human annota-
tors. Our work is similar in that we try to combine different
weak labels. However, unlike most methods for crowdsourc-
ing, we cannot assume that the labels are independent of
each other. Instead, we train the model to learn while ac-
counting for dependencies between the various weak super-
vision signals.

Ensemble methods such as boosting Schapire et al. [2002]
combine different weak learners (low-cost, low-powered
classifiers) to create classifiers that outperform the various
weak learners. These weak learners are not weak in the same
sense as weak supervision. These strategies are defined for
fully supervised settings. Although recent work has pro-
posed leveraging unlabeled data to improve the accuracies
of boosting methods Balsubramani and Freund [2015], our
settings differs since we do not expect to have access to
labeled data.

A growing set of weakly supervised applications includes
web knowledge extraction Bunescu and Mooney [2007],
Hoffmann et al. [2011], Mintz et al. [2009], Riedel et al.
[2010], Yao et al. [2010], visual image segmentation Chen
et al. [2014], Xu et al. [2014], and tagging of medical con-
ditions from health records Halpern et al. [2016]. As better
weakly supervised methods are developed, this set will ex-
pand to include other important applications.

We will show an estimation method that is connected to
those developed to estimate the error of classifiers without
labeled data Dawid and Skene [1979], Jaffe et al. [2016],
Madani et al. [2005], Platanios et al. [2014, 2016], Stein-
hardt and Liang [2016]. These methods rely on statistical
relationships between the error rates of different classifiers
or weak signals. Unlike these methods, we show in our ex-
periments that we can train models even when we do not
learn the error rates of classifiers. We show that using a
maximum error estimate of the weak signals, CLL learns to
accurately classify.

Like our approach, many other methods incorporate human
knowledge or side information into a learning objective.
These methods, including posterior regularization Druck
et al. [2008] and generalized expectation (GE) criteria and
its variants Mann and McCallum [2008, 2010], can be used
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Figure 1: Illustration of weak signals and label vectorized struc-
ture. For multi-class problems, we arrange the label vector so that
it contains indicators for each example belonging to each class.
The weak signals use the same indexing scheme. In this illustration,
weak signalsw1 andw2 estimate the probability of each example
belonging to class 1 and abstain on estimating membership in all
other classes.

for semi- and weakly supervised learning. They work by
providing parameter estimates as constraints to the objective
function of the model so that the label distribution of the
trained model tries to match the constraints. In our approach,
we incorporate human knowledge as error estimates into
our algorithm. However, we do not use the constraints for
model training. Instead, we use them to generate training
labels that satisfy the constraints, and these labels can then
be used downstream to train any model.

3 CONSTRAINED LABEL LEARNING

The goal of constrained label learning (CLL) is to return
accurate training labels for the data given the weak supervi-
sion signals. The estimation of these labels should be aware
of the correlation among the weak supervision signals and
should not be confounded by it. Toward this goal, we use
the weak signals’ expected error to define a constrained
space of possible labelings for the data. Any vector sam-
pled from this space can then be used as training labels.
We consider the setting in which the learner has access to
a training set of unlabeled examples, and a set of weak
supervision signals from various sources that provide ap-
proximate indicators of the target classification for the data.
Along with the weak supervision signals, we are provided
estimates of the expected error rates of the weak signals.
Formally, let the data beX = [x1, . . . , xn]. These examples
have corresponding labels y = [y1, . . . , yn] ∈ {0, 1}n. For
multi-label classification, where each example may be la-
beled as a member of K classes, we expand the label vector
to include an entry for each example-class combination,
i.e., y = [y(1,1), . . . , y(n,1), y(1,2), . . . , y(n−1,K), y(n,K)],
where yij is the indicator of whether the ith example is
in class j.1 See Fig. 1 for an illustration of this arrangement.

With weak supervision, the training labels y are unavail-
able. Instead, we have access to m weak supervision signals

1We represent the labels as a vector for later notational con-
venience, even though it may be more naturally arranged as a
matrix.

{w1, . . . ,wm}, where each weak signal w ∈ [∅, 0, 1]n is
represented as a vector of indicators that each example is in
each class. The weak signals can choose to abstain on some
examples. In that case, they assign a null value ∅ to that
example’s entry. In practice, weak signals for multi-class
problems typically only label one class at a time, such as
a one-versus-rest classification rule, so they effectively ab-
stain on all out-of-class entries. The weak signals can be
soft labels (probabilities) or hard labels (class assignments)
of the data. In conjunction with the weak signals, the learner
also receives the expected error rates of the weak signals
ε = [ε1, . . . , εm]. In practice, the error rates of the weak
signals are estimated or treated as a hyperparameter. The
expected empirical error of a weak signal wi is

εi =
1

ni

(
1(w 6=∅)w

>
i (1− yk) + 1(w 6=∅)(1−wi)

>yk

)
=

1

ni

(
1(w 6=∅)(1− 2wi)

>yk +w>i 1(w 6=∅)
)
,

(1)
where yk is the true label for the class k that the weak signal
wi labels, ni =

∑
1(wi 6=∅) and 1(wi 6=∅) is an indicator

function that returns 1 on examples the weak signals label
(i.e., do not abstain on). Hence, we only calculate the error
of the weak signals on the examples they label.

Analogously to Eq. (1), we can express the expected error
of all weak signals for the label vector as a system of linear
equations in the form Ay = c. To do this, we define each
row inA as

Ai = 1(wi 6=∅)(1− 2wi), (2)

a linear transformation of a weak signal w. Each entry in
the vector c is the difference between the expected error of
the weak signal and the sum of the weak signal, i.e.,

ci = niεi −w>i 1(w 6=∅). (3)

Valid label vectors then must be in the space

{ỹ|Aỹ = c ∧ ỹ ∈ [0, 1]n} . (4)

The true label y is not known. Thus, we want to find training
labels ỹ that satisfy the system of linear equations.

3.1 ALGORITHM

Having defined the space of possible labelings for the
data given the weak signals, we explain here how we ef-
ficiently sample a vector of training labels from the space.
First, we initialize a random ỹ from a uniform distribution
Ỹ ∼ U(0, 1)n. Then we minimize a quadratic penalty on vi-
olations of the constraints defining the space. The objective
function is

min
ỹ∈[0,1]n

‖Aỹ − c‖22 . (5)



Algorithm 1 Constrained Label Learning
Require: Weak signals [w1, . . . ,wm], and expected error ε =

[ε1, . . . , εm] for the signals.
1: Define A from Eq. (2) and c from Eq. (3) using the weak

signals and expected errors.
2: Initialize ỹ as ỹ ∼ U(0, 1)n

3: while not converged do
4: Update ỹ with its gradient from Eq. (5)
5: Clip ỹ to [0, 1]n

6: end while
return estimated labels ỹ

The solution to this quadratic objective function gives us
feasible labels for the training data. In our experiments, we
estimate the error rates ε of the weak signals. In cases where
the error estimates make an infeasible space, this quadratic
penalty acts as a squared slack. We solve Eq. (5) iteratively
using projected Adagrad Duchi et al. [2011], clipping ỹ
values to [0, 1]n between gradient updates. This approach is
fast and efficient, even for large datasets. Our algorithm is
a simple quadratic convex optimization that converges to a
unique optimum for each initialization of ỹ. In our exper-
iments, it converges after only a few iterations of gradient
descent. We run the algorithm 3 times with random initial-
ization of ỹ and take the mean of the ỹs as the estimated
label. We observed that the labels returned from the differ-
ent runs are very similar. We fix the number of iterations of
gradient descent for each run to 200 for all our experiments.
The full algorithm is summarized in Algorithm 1.

3.2 ANALYSIS

We start by analyzing the case where we have the true error
ε, in which case the true label vector y for CLL is a solution
in the feasible space. Although the true error rates are not
available in practice, this ideal setting is the motivating
case for the CLL approach. To begin the analysis, consider
an extreme case: if A is a square matrix with full rank,
then the only valid label ỹ in the space is the true label,
ỹ = y. Normally, A is usually underdetermined, which
means we have more data examples than weak signals. In
this case, there are many solutions for ỹ, so we can analyze
this space to understand how distant any feasible vector is
from the vector of all incorrect labels. Since label vectors
are constrained to be in the unit box, the farthest possible
label vector from the true labels is (1 − y). The result of
our analysis is the following theorem, which addresses the
binary classification case with non-abstaining weak signals.

Theorem 1. For any ỹ ∈ [0, 1]n such that Aỹ = c, its
Euclidean distance from the negated label vector (1− y) ∈
{0, 1}n is bounded below by

||ỹ − (1− y)|| ≥ n||A+(1− 2ε)||, (6)

whereA+ is the Moore-Penrose pseudoinverse ofA.

Proof. We first relax the constrained space by removing the
[0, 1]n box constraints. We can then analyze the projection
onto the feasible space:

min
ỹ
||(1− y)− ỹ|| s.t. Aỹ = c. (7)

Define a vector z := ỹ − y. We can rewrite the distance as

min
z
||(1− 2y)− z|| s.t. Az = 0. (8)

The minimization is a projection of (1− 2y) onto the null
space of A. Since the null and row spaces of a matrix are
complementary, (1− 2y) decomposes into

(1− 2y) = Prow(1− 2y) + Pnull(1− 2y),

where Prow and Pnull are orthogonal projections into the
row and null spaces of A, respectively. We can use this
decomposition to rewrite the distance of interest:

||(1− 2y)− Pnull(1− 2y)||
= ||(1− 2y)− ((1− 2y)− Prow(1− 2y))||
= ||Prow(1− 2y)||.

(9)

For any vector v, its projection into the row space of matrix
A is A+Av, where A+ is the Moore-Penrose pseudoin-
verse ofA. The distance of interest is thus ||A+A(1−2y)||.
We can use the definition ofA to further simplify. LetW
be the matrix of weak signalsW = [w1, . . . ,wm]>. Then
the distance is

||A+(1− 2W )(1− 2y)||
= ||A+((1− 2W )~1n − 2(1− 2W )y)||
= ||A+(n− 2W~1n − 2Ay)||.

(10)

BecauseAy = c = nε−W~1n, terms cancel, yielding the
bound in the theorem:

||A+(n− 2W~1n − 2nε+ 2W~1n)||
= ||A+(n− 2nε)|| = n||A+(1− 2ε)||.

(11)

This bound provides a quantity that is computable in prac-
tice. However, to gain an intuition about what factors af-
fect its value, the distance formula can be further analyzed
by using the singular-value decomposition (SVD) formula
for the pseudoinverse. Consider SVDA = UΣV >. Then
A+ = V Σ+U>, where the pseudoinverse Σ+ contains the
reciprocal of all nonzero singular values along the diagonal
(and zeros elsewhere). The distance simplifies to

n||V Σ+U>(1− 2ε)|| = n||Σ+U>(1− 2ε)||, (12)

since V is orthonormal. Furthermore, let p = U>(1− 2ε),
i.e., p is a rotation of the centered error rates of the weak
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Figure 2: Error of CLL estimated labels compared to majority
vote as we increase the rank of A by replacing redundant weak
signals with linearly independent weak signals.

signals with the same norm as (1− 2ε). From this change
of variables, we can decompose the distance into

n||Σ+p|| = n
√
σ2
1p

2
1 + . . .+ σ2

mp
2
m, (13)

where σj is the jth singular value ofA+.

As this distance grows toward
√
n, the space of possible la-

belings shrinks toward zero, at which point the only feasible
label vectors are close to the true labels y. Equation (13)
indicates that the distance increases roughly as the rank of
A increases, in which case the number of non-zero singular
values in Σ+ increases, irrespective of how many actual
weak signals are given. Thus, redundancy in the weak super-
vision does not affect the performance of CLL. The other
key factor in the distance is how far from 0.5 the errors ε
are. These quantities can be interpreted as the diversity and
number of the weak signals (corresponding to the rank) and
their accuracies (the magnitude of p).

Though the analysis is for length-n label vectors, it is
straightforwardly extended to multi-label settings with
length-(nK). And with careful indexing and tracking of
the abstaining indicators, the same form of analysis can
apply for abstaining weak signals.

Figure 2 shows an empirical validation of Theorem 1 on a
synthetic experiment. We plot the error of the labels returned
by CLL and majority voting as we change the rank ofA. We
use a synthetic data for a binary classification task with 100
randomly generated examples containing 20 binary features.
The weak signals are random binary predictions for the
labels where each weak signal error rate is calculated using
the true labels of the data. We start with 100 redundant
weak signals by generating a matrixA whose 100 columns
contain copies of the same weak signal, giving it a rank of
1. We then iteratively increase the rank of A by replacing
copies of the weak signal with random vectors from the
uniform distribution. The error of CLL labels approaches
zero as the rank of the matrix increases while the majority
vote error does not improve significantly.

3.3 ERROR ESTIMATION

In our analysis, we assume that the expected error rates of
the weak signals are available. This may be the case if the
weak signals have been evaluated on historical data or if
an expert provides the error rates. In practice, users typi-
cally define weak supervision signals whose error rates are
unknown. In this section, we discuss two approaches to han-
dle such situations. We test these estimation techniques on
real and synthetic data in our experiments, finding that CLL
with these strategies forms a powerful weakly supervised
approach.

3.3.1 Agreement Rate Method

Estimating the error rates of binary classifiers using their
agreement rates was first proposed by Platanios et al. [2014].
They propose two different objective functions for solving
the error rates of classifiers using their agreement rates as
constraints. Similar to MeTaL Ratner et al. [2018], we solve
a matrix-completion problem to find a low-rank factoriza-
tion for the weak signal accuracies. We assume that if the
weak signals are conditionally independent, we can relate
the disagreement rates to the weak signal accuracies. We
implemented this method and report its performance in our
synthetic experiment (see Section 4). The one-vs-all form of
the weak signals on our real datasets violates the assumption
that each weak signal makes prediction on all the classes, so
we cannot use the agreement rate method on our real data.

3.3.2 Uniform Error Rate

The idea of using uniform error rates of the weak signals was
first proposed in ALL Arachie and Huang [2019b]. Their ex-
periments showed that ALL can learn as effectively as when
using true error rates by using a constant for the error rates
of all the weak signals on their binary classification datasets.
We use this approach in our experiments and extend it to
weak supervision signals that abstain and also on multi-class
datasets. Figure 3 plots the accuracy of generated labels as
we increase the error-rate parameter. On the binary-class
SST-2 dataset, the label accuracy remains similar if the error
rate is set between 0 and 0.5 and drops for values at least
0.5. On the multiclass Fashion-MNIST data, we notice sim-
ilar behavior where the label accuracies are similar between
0.05 and 0.1 and drop with larger values. We surmise that
this behavior mirrors the type of weak supervision signals
we use in our experiments. The weak signals in our real
experiments are one-vs-all signals; hence a baseline signal
(guessing 0 on all examples) will have an error rate of 1

K .
Performance deteriorates when the error rate is worse than
this baseline rate.
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Figure 3: Accuracy of constrained label learning as we increase
the error rates from 0 to 1 on binary and 0 to 0.5 on multiclass
datasets (SST-2 and Fashion-MNIST).

Method Test Accuracy

CLL (Agr. rate ε) 0.668± 0.005
CLL (Constant ε) 0.630± 0.009
Data Programming 0.504± 0.000
Majority Vote 0.504± 0.000

CLL (True ε) 0.675 ± 0.024
Supervised Learning 0.997± 0.001

Table 1: Classification accuracies of the different methods on
synthetic data using dependent weak signals. We report the mean
and standard deviation over three trials.

4 EXPERIMENTS

We test constrained label learning on a variety of tasks on
text and image classification. First, we measure the test
accuracy of CLL on a synthetic dataset and compare its per-
formance to that of supervised learning and other baselines.
Second, we validate our approach on real datasets.

For all our experiments, we compare CLL to other weakly
supervised methods: data programming (DP) Ratner et al.
[2016] and majority-vote (MV) or averaging (AVG). Addi-
tionally, on our real datasets we show comparison to reg-
ularized minimax conditional entropy for crowdsourcing
(MMCE) Zhou et al. [2015]. For reference, we include the
performance of supervised learning baseline. On the image
datasets, we show comparison of CLL to Stoch-GALL, a
multiclass extension of adversarial label learning. It is worth
noting that DP was developed for binary classification, thus
to compare its performance on our multiclass datasets, we
run DP on the weak signals that label each class in the
datasets. All the weak signals on the real datasets are one-
vs-all signals meaning they only label a single class and
abstain on other classes.

Method Test Accuracy

CLL (Agr. rate ε) 0.984± 0.003
CLL (Constant ε) 0.978± 0.004
Data Programming 0.978± 0.003
Majority Vote 0.925± 0.009

CLL (True ε) 0.985± 0.0004
Supervised Learning 0.997± 0.001

Table 2: Classification accuracies of the different methods on
synthetic data using independent weak signals. We report the mean
and standard deviation over three trials

4.1 SYNTHETIC EXPERIMENT

We construct a toy dataset for a binary classification task
where the data has 200 randomly generated binary features
and 20,000 examples, 16,000 for training and 4,000 for
testing. Each feature vector has between 50% to 70% cor-
relation with the true label. We define two scenarios for
our synthetic experiments. We run the methods using (1)
dependent weak signals and, (2) independent weak signals.
In both experiments, we use 10 weak signals that have at
most 30% coverage on the data and conflicts on their label
assignments. The dependent weak signals were constructed
by generating one weak signal that is copied noisily 9 times
(randomly flipping 20% of the labels). The original weak
signal labeled 30% of the data points and had an accuracy
in [0.5, 0.6]. So, on average, we expect to perturb 6% of its
labels on the copies. The independent weak signals are ran-
domly generated to have accuracies in the range [0.6, 0.7].

We report in Table 1 and Table 2 the label and test accuracy
from running CLL using true error rates for the weak sig-
nals, error rates estimated via agreement rate described in
Section 3.3.1, and error rates using a maximum error rate
constant set to 0.4 as the expected error for all the weak
signals. CLL trained using the true ε obtains the highest
test accuracy compared to the other baselines, and its perfor-
mance almost matches that of supervised learning in Table 2.
With the true bounds, CLL slightly outperforms CLL trained
using estimated and constant ε. More interestingly, the re-
sults in Table 1 show that our method outperforms other
baselines that are strongly affected by the dependence in
the weak signals. The generative model of data program-
ming assumes that the weak signals are independent given
the true labels, but this is not the case in this setup as the
weak signals are strongly dependent. Thus the conditional
independence violation hurts its performance and essentially
reduces it to performing a majority vote on the labels.

Since our evaluation in Fig. 3 demonstrated that CLL is
not very sensitive to the choice of error rate, we set the
error rates ε = 0.01 on the text datasets and ε = 1

K on the
image datasets. We choose these values because our weak
signals in the text dataset tend to label few examples and



Datasets CLL MMCE DP MV

IMDB 0.736± 0.0005 0.573 0.693 0.702
SST-2 0.678± 0.0004 0.677 0.666 0.666
YELP-2 0.765± 0.0002 0.685 0.770 0.775
TREC-6 0.842± 0.004 0.833 0.898 0.273

Table 3: Label accuracies of CLL compared to other weak supervision methods on different text classification datasets. We report the
mean and standard deviation over three trials. CLL is trained using ε = 0.01 on the text classification datasets.

Datasets CLL MMCE DP MV Supervised

IMDB 0.740± 0.005 0.551 0.623± 0.007 0.724±0.004 0.820±0.003
SST-2 0.729± 0.001 0.727 0.720± 0.001 0.720± 0.0009 0.792± 0.001
YELP-2 0.840± 0.0007 0.68 0.760± 0.005 0.798± 0.007 0.879± 0.001
TREC-6 0.641± 0.022 0.64 0.627± 0.014 0.605± 0.006 0.700± 0.024

Table 4: Test accuracies of CLL compared to other weak supervision methods on different text classification datasets. We report the mean
and standard deviation over three trials. CLL is trained using ε = 0.01 on the text classification datasets

have low error rates thus we prefer not to under-constrain
the optimization by using high error rates values for the one-
vs-all weak-signals. In contrast, our human labeled weak
signals on the image datasets have high error rates hence we
set the error rate value to the baseline value for one-vs-all
signals.

4.2 REAL EXPERIMENTS

The data sets for our real experiments and their weak signal
generation process are described below. Table 7 summarizes
the key statistics about these datasets. Our code and datasets
are provided here.2

IMDB The IMDB dataset Maas et al. [2011] is used for
sentiment analysis. The data contains reviews of different
movies, and the task is to classify user reviews as either
positive or negative in sentiment. We provide weak supervi-
sion by measuring mentions of specific words in the movie
reviews. We created a set of positive words that weakly in-
dicate positive sentiment and negative words that weakly
indicate negative sentiment. We chose these keywords by
looking at samples of the reviews and selecting popular
words used in them. Many reviews could contain both pos-
itive and negative keywords, and in these cases, the weak
signals will conflict on their labels. We split the dataset
into training and testing subsets, where any example that
contains one of our keywords is placed in the training set.
Thus, the test set consists of reviews that are not labeled by
any weak signal, making it important for the weakly super-
vised learning to generalize beyond the weak signals. The
dataset contains 50,000 reviews, of which 29,182 are used
for training and 20,392 are test examples.

2https://github.com/VTCSML/
Constrained-Labeling-for-Weakly-Supervised-Learning

SST-2 The Stanford Sentiment Treebank (SST-2) is an-
other sentiment analysis dataset Socher et al. [2013] con-
taining movie reviews. Like the IMDB dataset, the goal is
to classify reviews from users as having either positive or
negative sentiment. We use similar keyword-based weak su-
pervision but with different keywords. We use the standard
train-test split provided by the original dataset. While the
original training data contained 6,920 reviews, our weak sig-
nals only cover 3,998 examples. Thus, we used the reduced
data size to train our model. We use the full test set of 1,821
reviews.

YELP-2 We used the Yelp review dataset containing user
reviews of businesses from the Yelp Dataset Challenge in
2015. Like the IMDB and SST-2 dataset, the goal is to clas-
sify reviews from users as having either positive or negative
sentiment. We converted the star ratings in the dataset by
considering reviews above 3 stars rating as positive and
negative otherwise. We used similar weak supervision gen-
erating process as in SST-2. We sampled 50,000 reviews for
training and 10,000 for testing from the original data set.
Our weak signals only cover 45,370 data points, thus, we
used the reduced data size to train our model.

TREC-6 TREC is a question classification dataset consist-
ing of fact-based questions divided into different categories
Li and Roth [2002]. The task is to classify questions to
predict what category the question belongs to. We use the
six-class version (TREC-6) from which we use 4,988 exam-
ples for training and 500 for testing. The weak supervision
we use combines word mentions with other heuristics we
defined to analyze patterns of the question and assign a class
label based on certain patterns.

SVHN The Street View House Numbers (SVHN) Netzer
et al. [2018] dataset represents the task of recognizing digits

https://github.com/VTCSML/Constrained-Labeling-for-Weakly-Supervised-Learning
https://github.com/VTCSML/Constrained-Labeling-for-Weakly-Supervised-Learning


Datasets CLL MMCE DP AVG Stoch-GALL

SVHN 0.575± 0.001 0.1 0.42 0.444 0.196± 0.025
Fashion-MNIST 0.658± 0.001 0.147 0.65 0.649 0.488± 0.002

Table 5: Label accuracies of CLL compared to other weak supervision methods on image datasets. We report the mean and standard
deviation over three trials. CLL is trained using ε = 1

K
on the datasets and it outperforms other baseline approaches.

Datasets CLL MMCE DP AVG Stoch-GALL Supervised

SVHN 0.670± 0.031 0.1 0.265± 0.004 0.432± 0.001 0.366± 0.003 0.851± 0.002
Fashion-MNIST 0.695± 0.002 0.151 0.635± 0.0004 0.666± 0.002 0.598± 0.002 0.852± 0.003

Table 6: Test accuracies of CLL compared to other weak supervision methods on image datasets. We report the mean and standard
deviation over three trials. CLL is trained using ε = 1

K
on the datasets.

Dataset No. classes No. weak signals Train Size Test Size

IMDB 2 10 29,182 20,392
SST-2 2 14 3,998 1,821
YELP-2 2 14 45,370 10,000
TREC-6 6 18 4,988 500
SVHN 10 50 73,257 26,032
Fashion-MNIST 10 50 60,000 10,000

Table 7: Summary of datasets, including the number of weak
signals used for training.

on real images of house numbers taken by Google Street
View. Each image is a 32× 32 RGB vector. The dataset has
10 classes and has 73,257 training images and 26,032 test
images. We define 50 weak signals for this dataset. For this
image classification dataset, we augment 40 other human-
annotated weak signals (four per class) with ten pseudolabel
predictions of each class from a model trained on 1% of
the training data. The human-annotated weak signals are
nearest-neighbor classifiers where a human annotator is
asked to mark distinguishing features about an exemplar im-
age belonging to a specific class. We then calculate pairwise
Euclidean distances between the pixels in the marked region
across images. We convert the Euclidean scores to probabil-
ities (soft labels for the examples) via a logistic transform.
Through this process, an annotator is guiding the design of a
simple one-versus-rest classifier, where images most similar
to the reference image are more likely to belong to its class.

Fashion-MNIST The Fashion-MNIST dataset Xiao et al.
[2017] represents the task of recognizing articles of clothing
where each example is a 28 × 28 grayscale image. The
images are categorized into 10 classes of clothing types
where each class contains 6,000 training examples and 1,000
test examples. We used the same format of weak supervision
signals as in the SVHN dataset (pseudolabels and human-
annotated nearest-neighbor classifiers).

Models For the text analysis tasks, we use 300-
dimensional GloVe vectors Pennington et al. [2014] as fea-
tures for the text classification tasks. Then we train a simple

two-layer neural network with 512 hidden units and ReLU
activation in its hidden layer. The model for the image clas-
sification tasks is a six-layer convolutional neural network
model with a 3×3 filter and 32 channels at each layer. We
use a sigmoid function as the output layer for both models
in our experiment. Thus we train using binary cross-entropy
loss with the soft labels returned by CLL, which represent
the probability of examples belonging to classes.

Results Tables 3 and 4 list the performance of the various
weakly supervised methods on text classification datasets,
while Tables 5 and 6 list the performance of various weakly
supervised methods on image classification datasets. Con-
sidering both types of accuracy, CLL is able to output labels
for the training data that train high-quality models for the
test set. CLL outperforms all competing methods on test
accuracy on the datasets. Interestingly, on Yelp and Trec-6
datasets, CLL label accuracy is lower than that of compet-
ing baselines yet CLL still achieves superior test accuracy.
We surmise that CLL label accuracy is lower than compet-
ing methods on some datasets because of the inaccuracy in
the error estimates. Generally, CLL is able to learn robust
labels from the weak signals, and it seems to pass this in-
formation to the learning algorithm to help it generalize on
unseen examples. For example, on the IMDB dataset, we
used keyword-based weak signals that only occur on the
training data. The model trained using CLL labels performs
better on the test set than models trained with labels learned
from data programming or majority vote. CLL outperforms
all competing methods on the image classification tasks.
On the digit recognition task (SVHN), CLL outperforms
the best compared method (average) by over 13 percentage
points for the label accuracy and 23 percentage points on
the test data. CLL is able to better synthesize information
from the low-quality human-annotated signals combined
with the higher-quality pseudolabel signals.



5 CONCLUSION

We introduced constrained label learning (CLL), a weakly
supervised learning method that combines different weak
supervision signals to produce probabilistic training labels
for the data. CLL defines a constrained space for the labels
of the training data by requiring that the errors of the weak
signals agree with the provided error estimates. CLL is fast
and converges after a few iterations of gradient descent. Our
theoretical analysis shows that the accuracy of our estimated
labels increases as we add more linearly independent weak
signals. This analysis is consistent with the intuition that the
constrained-space interpretation of weak supervision avoids
overcounting evidence when multiple redundant weak sig-
nals provide the same information, since they are linearly
dependent. Our experiments compare CLL against other
weak supervision approaches on different text and image
classification tasks. The results demonstrate that CLL out-
performs these methods on most tasks. Interestingly, we are
able to perform well when we train CLL using a worst case
uniform error estimate for the weak signals. This shows
that CLL is robust and not too sensitive to inaccuracy in
the error estimates. In future work, we aim to theoretically
analyze the behavior of this approach in such settings where
the error rates are unreliable, with the hope that theoretical
understanding will suggest new approaches that are even
more robust.
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