

Structured Output Learning with Conditional Generative Flows

You Lu, Bert Huang

Virginia Tech you.lu@vt.edu, bhuang@vt.edu

Introduction

In this paper, we develop conditional generative flows (c-Glow) for structured output learning. Our model has the following properties:

- It is a variant of Glow (Kingma et al. 2018), with additional networks to capture the relationship between input and structured output variables.
- C-Glow can directly model the conditional distribution p(y|x) without restrictive assumptions (e.g., variables being fully connected).
- C-Glow uses invertible flows that allow exact computation of log-likelihood, removing the need for surrogates or inference.

Glow

- ► Glow is a flow-based generative model that extends other flow-based models: NICE and Real-NVP. The model mainly consists of three components.
- 1. Actnorm layers each perform an affine transformation of activations using a scalar and bias parameters, i.e., *s* and *b*.
- 2. Invertible 1x1 convolutional layers perform a generalization of a permutation operation. Each is parameterized by $c \times c$ matrix W.
- 3. Affine layers capture the correlations among spatial dimensions. The affine coupling layer separates the v into two parts, i.e., v_1 , v_2 . It passes through the v_1 to a neural network and outputs the parameters, i.e., s_2 and b_2 for v_2 .

Image Segmentation

Experiment Settings

- ► We use the Weizmann Horse Images database, which contains 328 images of horses and their segmentation masks.
- The training and test sets contain 200 and 128 images, respectively. We resize the images and their masks to 64×64 pixels.
- ► We compare our method with non-linear transformations (NLStruct) and FCN-VGG

Compared to other methods using normalizing flows (e.g., Trippe & Turner, 2018), c-Glow's output y is both conditioned on complex input and a high-dimensional tensor rather than a one-dimensional scalar.

Structured Prediction

- In structured prediction, we collect a dataset $\mathcal{D} = \{(x_1, y_1), ..., (x_N, y_N)\}, \text{ where } x_i \text{ is the } i \text{th input} \}$ vector and y_i is the corresponding output.
- Let x and y be random variables with unknown true distribution $p^*(y|x)$. We learn a model $p(y|x,\theta)$ by minimizing negative log-likelihood

 $\mathcal{L}(\mathcal{D}) = -\frac{1}{N} \sum_{i=1}^{N} \log p(y_i | x_i, \theta).$

► The label y comes from a complex, high-dimensional output space \mathcal{Y} with dependencies among output dimensions.

► Glow uses a multi-scale architecture to combine layers, with "squeeze" layers for shuffling the variables and "split" layers for reducing the computation cost.

Conditional Generative Flows

Conditional Glow

- ► To modify Glow to be conditional, we augment its three components.
- ► We add a *conditioning network* (CN) to each component to generate the parameter weights for each layer.
- 1. Conditional Actnorm. In conditional Glow, we use a conditioning network to generate the $c \times 1$ vectors, i.e., the scale *s* and the bias *b*, and then use them to transform the variable.

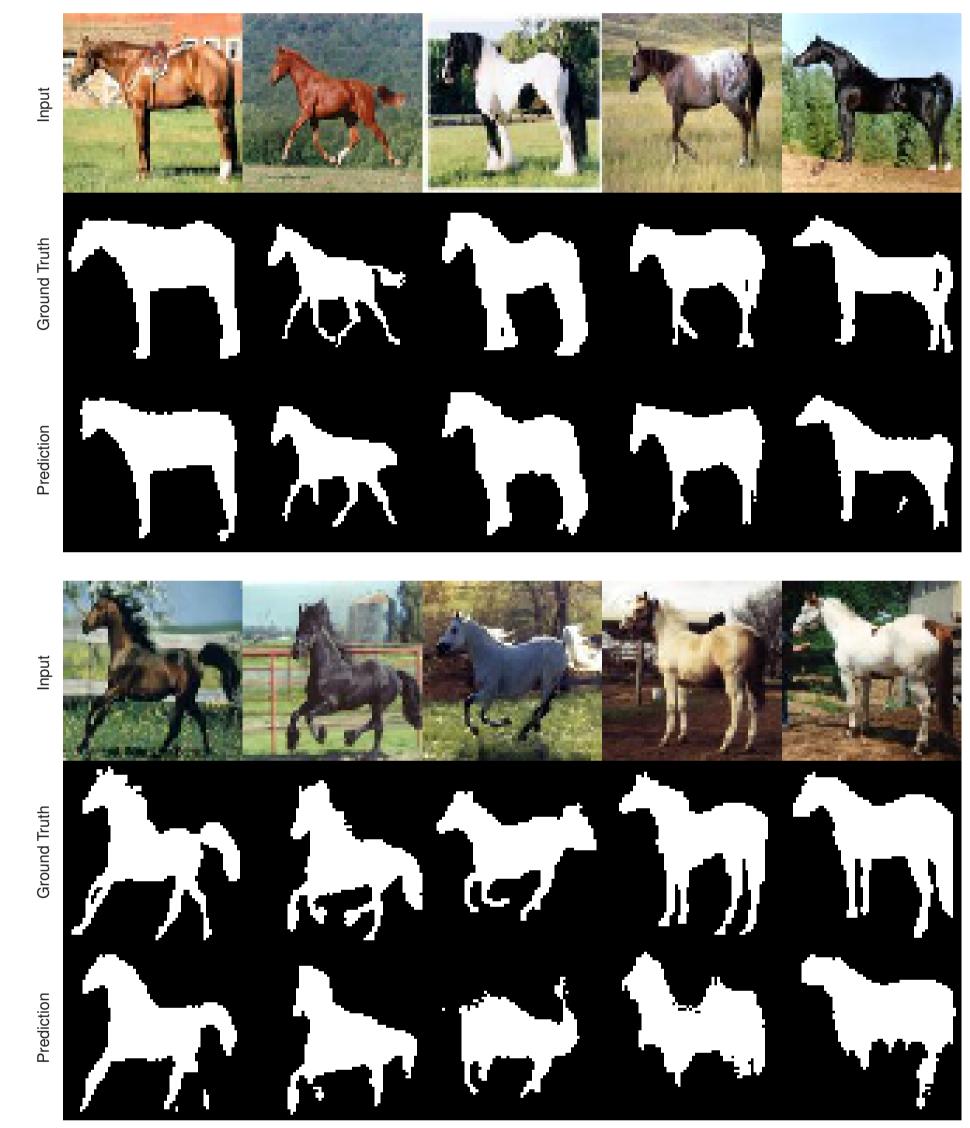
$$s, b = CN(x), \quad u_{i,j} = s \odot v_{i,j} + b.$$

We use pixel-wise accuracy and mean intersection-over-union (IOU) as metrics.

Segmentation Results

Table: Segmentation metrics comparing c-Glow with others.

	c-Glow	NLStruct	FCN-VGC
Accuracy	0.927		0.850
IOU	0.830	0.755	0.670



Many structured output learning approaches use an energy-based model to define a conditional distribution:

 $p(y|x) = rac{e^{E(y,x)}}{\int_{y'\in\mathcal{Y}} e^{E(y',x)}},$

where $E(.,.): \mathcal{X} \times \mathcal{Y} \to \mathcal{R}$ is the energy function. In deep structured prediction, E(x, y) depends on x via a deep network.

- For high dimensional y, the partition function, i.e., $\int_{\mathbf{v}' \in \mathcal{V}} e^{E(\mathbf{y}', \mathbf{x})}$, is intractable.
- Approximating the partition function with methods such as variational inference or surrogate objectives requires complicated training and sub-optimal results.

Conditional Normalizing Flows

A normalizing flow is a composition of invertible functions $f = f_1 \circ f_2 \circ \cdots \circ f_M$, which transforms the target y to a latent code z drawn from a simple distribution.

- 2. Conditional 1x1 Convolutional. We use a

conditioning network to generate the $c \times c$ weight matrix that permutes each dimension's variable.

 $W = CN(x), \quad u_{i,j} = Wv_{i,j}.$

3. Conditional Affine Coupling. The affine coupling layer separates the input variable to two halves, i.e., v_1 and v_2 . It uses v_1 as the input to a NN to generate scale and bias parameters for v_2 . We use a CN to conditionally extract features from x, which we concatenate with v_1 to form the input of NN.

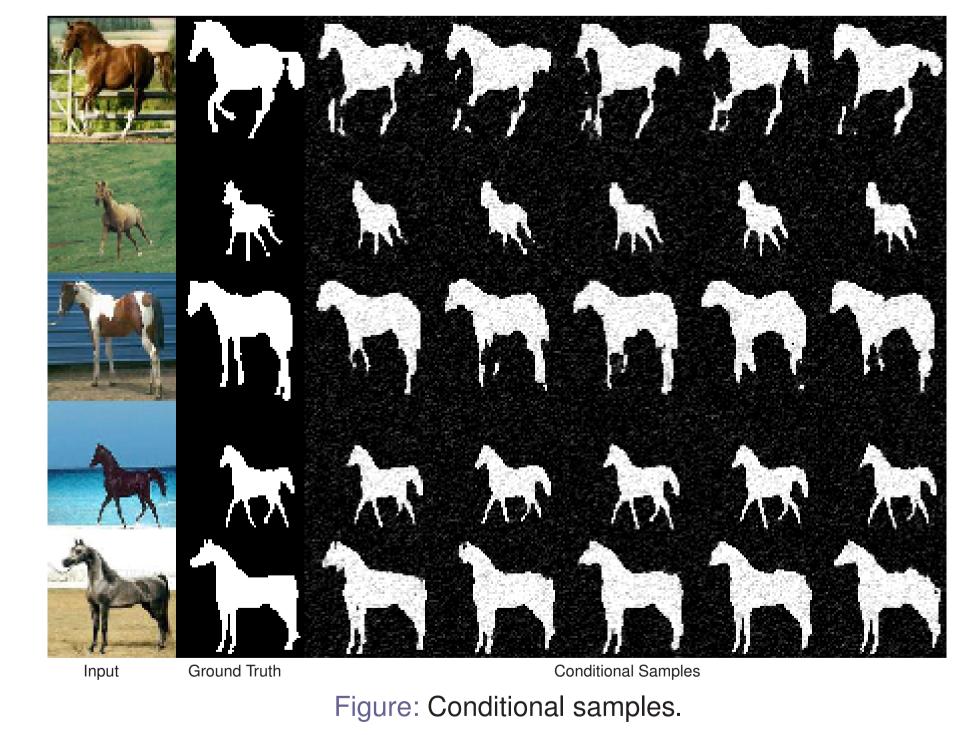
> $v_1, v_2 = \operatorname{split}(v),$ $x_r = CN(x), \quad s_2, b_2 = NN(v_1, x_r),$ $u_2 = s_2 \odot v_2 + b_2, \quad u = \text{concat}(v_1, u_2).$

- ► We can still use the multi-scale architecture to combine these conditional components, so that can preserve the efficiency of computation.
- The conditioning networks do not need to be invertible when optimizing a conditional model.
- We can back-propagate to differentiate the exact conditional likelihood, and optimize all the c-Glow

Figure: Sample segmentation results.

Conditional Sampling

► We can directly use the generative process, to generate conditional samples.



- In conditional normalizing flows, we rewrite each function as $f_i = f_{X,\phi_i}$, making it parameterized by both x and its parameter ϕ_i .
- ► Thus, with the *change of variables* formula, we can rewrite the conditional likelihood as

 $\log p(y|x,\theta) = \log p_Z(z) + \sum_{i=1}^M \log \left| \det \left(\frac{\partial f_{x,\phi_i}}{\partial r_{i-1}} \right) \right|, \quad (1)$ where $r_i = f_{\phi_i}(r_{i-1}), r_0 = x$, and $r_M = z$.

- In this paper, we address the structured output problem by using conditional normalizing flows, i.e., Equation 1, to calculate the conditional distribution.
- Our method is different from previous methods in that the labels in our problem are high-dimensional tensors rather than scalars.

parameters using gradient methods.

Inference

► Given a model, we can perform efficient sampling with a single forward pass through the c-Glow.

 $z \sim p_Z(z), y = g_{X,\phi}(z),$

where $g_{x,\phi} = f_{x,\phi}^{-1}$ is the inverse function.

► We use sample averages to estimate marginal expectations of output variables. Let $\{z_1, ..., z_M\}$ be samples drawn from $p_Z(z)$. We estimate marginals as

$$y^* pprox rac{1}{M} \sum_{i=1}^M g_{x,\phi}(z_i).$$
 (3)

In some tasks like semantic segmentation, the space of y is discrete. We relax the discrete output space to a continuous space during training. When we do prediction, we simply round y to discrete values.

Conclusion

(2)

- ► We propose conditional generative flows (c-Glow), which are flow-based conditional generative models for structured output learning.
- We convert the Glow model to a conditional form by incorporating *conditioning networks*.
- In contrast with other deep structured output learning, we can maximize the exact likelihood, so we do not need surrogate objectives or approximate inference.
- In our experiments, we test c-Glow on image segmentation, finding that c-Glow is comparable to recent deep structured prediction approaches.