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Introduction

In this paper, we develop conditional generative flows
(c-Glow) for structured output learning. Our model has
the following properties:
I It is a variant of Glow (Kingma et al. 2018), with

additional networks to capture the relationship
between input and structured output variables.

I C-Glow can directly model the conditional distribution
p(y |x) without restrictive assumptions (e.g., variables
being fully connected).

I C-Glow uses invertible flows that allow exact
computation of log-likelihood, removing the need for
surrogates or inference.

I Compared to other methods using normalizing flows
(e.g., Trippe & Turner, 2018), c-Glow’s output y is both
conditioned on complex input and a high-dimensional
tensor rather than a one-dimensional scalar.

Structured Prediction

I In structured prediction, we collect a dataset
D = {(x1, y1), ..., (xN, yN)}, where xi is the i th input
vector and yi is the corresponding output.

I Let x and y be random variables with unknown true
distribution p∗(y |x). We learn a model p(y |x , θ) by
minimizing negative log-likelihood

L(D) = −1
N

N∑
i=1

log p(yi|xi, θ).

I The label y comes from a complex, high-dimensional
output space Y with dependencies among output
dimensions.

I Many structured output learning approaches use an
energy-based model to define a conditional
distribution:

p(y |x) = eE(y ,x)∫
y ′∈Y eE(y ′,x),

where E(., .) : X × Y → R is the energy function. In
deep structured prediction, E(x , y) depends on x via
a deep network.

I For high dimensional y , the partition function, i.e.,∫
y ′∈Y eE(y ′,x), is intractable.

I Approximating the partition function with methods
such as variational inference or surrogate objectives
requires complicated training and sub-optimal results.

Conditional Normalizing Flows

I A normalizing flow is a composition of invertible
functions f = f1 ◦ f2 ◦ · · · ◦ fM, which transforms the
target y to a latent code z drawn from a simple
distribution.

I In conditional normalizing flows, we rewrite each
function as fi = fx ,φi, making it parameterized by both
x and its parameter φi.

I Thus, with the change of variables formula, we can
rewrite the conditional likelihood as

log p(y |x , θ) = log pZ(z) +
M∑

i=1

log

∣∣∣∣det(∂fx ,φi

∂ri−1

)∣∣∣∣ , (1)

where ri = fφi(ri−1), r0 = x , and rM = z.

I In this paper, we address the structured output
problem by using conditional normalizing flows, i.e.,
Equation 1, to calculate the conditional distribution.

I Our method is different from previous methods in that
the labels in our problem are high-dimensional
tensors rather than scalars.

Glow

I Glow is a flow-based generative model that extends
other flow-based models: NICE and Real-NVP. The
model mainly consists of three components.

1. Actnorm layers each perform an affine
transformation of activations using a scalar and
bias parameters, i.e., s and b.

2. Invertible 1x1 convolutional layers perform a
generalization of a permutation operation. Each is
parameterized by c × c matrix W .

3. Affine layers capture the correlations among
spatial dimensions. The affine coupling layer
separates the v into two parts, i.e., v1, v2. It passes
through the v1 to a neural network and outputs the
parameters, i.e., s2 and b2 for v2.

I Glow uses a multi-scale architecture to combine
layers, with “squeeze” layers for shuffling the
variables and “split” layers for reducing the
computation cost.

Conditional Generative Flows

Conditional Glow
I To modify Glow to be conditional, we augment its

three components.

I We add a conditioning network (CN) to each
component to generate the parameter weights for
each layer.

1. Conditional Actnorm. In conditional Glow, we use
a conditioning network to generate the c × 1
vectors, i.e., the scale s and the bias b, and then
use them to transform the variable.

s,b = CN(x), ui ,j = s � vi ,j + b.

2. Conditional 1x1 Convolutional. We use a
conditioning network to generate the c × c weight
matrix that permutes each dimension’s variable.

W = CN(x), ui ,j = Wvi ,j.

3. Conditional Affine Coupling. The affine coupling
layer separates the input variable to two halves, i.e.,
v1 and v2. It uses v1 as the input to a NN to
generate scale and bias parameters for v2. We use
a CN to conditionally extract features from x , which
we concatenate with v1 to form the input of NN.

v1, v2 = split(v),
xr = CN(x), s2,b2 = NN(v1, xr),

u2 = s2 � v2 + b2, u = concat(v1,u2).

I We can still use the multi-scale architecture to
combine these conditional components, so that can
preserve the efficiency of computation.

I The conditioning networks do not need to be
invertible when optimizing a conditional model.

I We can back-propagate to differentiate the exact
conditional likelihood, and optimize all the c-Glow
parameters using gradient methods.

Inference
I Given a model, we can perform efficient sampling

with a single forward pass through the c-Glow.

z ∼ pZ(z), y = gx ,φ(z), (2)

where gx ,φ = f−1
x ,φ is the inverse function.

I We use sample averages to estimate marginal
expectations of output variables. Let {z1, ..., zM} be
samples drawn from pZ(z). We estimate marginals as

y∗ ≈ 1
M

M∑
i=1

gx ,φ(zi). (3)

I In some tasks like semantic segmentation, the space
of y is discrete. We relax the discrete output space to
a continuous space during training. When we do
prediction, we simply round y to discrete values.

Image Segmentation

Experiment Settings
I We use the Weizmann Horse Images database,

which contains 328 images of horses and their
segmentation masks.

I The training and test sets contain 200 and 128
images, respectively. We resize the images and their
masks to 64× 64 pixels.

I We compare our method with non-linear
transformations (NLStruct) and FCN-VGG

I We use pixel-wise accuracy and mean
intersection-over-union (IOU) as metrics.

Segmentation Results

Table: Segmentation metrics comparing c-Glow with others.

c-Glow NLStruct FCN-VGG
Accuracy 0.927 — 0.850
IOU 0.830 0.755 0.670
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Figure: Sample segmentation results.

Conditional Sampling
I We can directly use the generative process, to

generate conditional samples.

Input Ground Truth Conditional Samples

Figure: Conditional samples.

Conclusion

I We propose conditional generative flows (c-Glow),
which are flow-based conditional generative models
for structured output learning.

I We convert the Glow model to a conditional form by
incorporating conditioning networks.

I In contrast with other deep structured output learning,
we can maximize the exact likelihood, so we do not
need surrogate objectives or approximate inference.

I In our experiments, we test c-Glow on image
segmentation, finding that c-Glow is comparable to
recent deep structured prediction approaches.


