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A Degree Distributional Metric Learning

While SPML using k-nearest neighbors learns a structure preserving metric, one of its limitations
is in predicting full graphs in an out-of-sample setting. On the training data, the degree of each
node is known, so the connectivity algorithm connects the exact number of neighbors as necessary
to reconstruct the input graph. On a new set of nodes, however, the target degree is unknown. One
method to address this is to learn a non-stationary degree preference function over node features that
relates the features of a node to its target degree.

As one possible variant to structure preserving metric learning (SPML), degree distributional met-
ric learning (DDML) simultaneously learns a metric while also learning a parameterized, non-
stationary degree preference function used to compute the connectivity of nodes. This extension can
be understood as SPML with an adaptive connectivity algorithm, rather than the default k-nearest
neighbors.

The connectivity algorithm uses a degree preference function g, which takes a node’s feature vector
x and a target degree k, and is parameterized by matrix S ∈ Rd×n. The score is then computed via

g(k|x;S) =

k∑
k′=1

x>sk′ .

The score of a graph A is then the sum of all edge distances and the degree preference functions for
each node

F (A|X;M,S) =
∑
ij

AijDM(xi,xj)−
∑
i

g

∑
j

Aij |xi;S

 .

The objective for DDML is otherwise analogous to that of SPML:

f(M) =
λ

2
||M||2 −

∑
Ã∈Bn×n

max(F (A|X;M,S)− F (Ã|X;M,S) + ∆(A, Ã), 0),

where ∆ denotes Hamming distance. This objective is solvable via the cutting-plane style opti-
mization by iteratively finding the worst-violating Ã and adding it to a constraint set. For concave
degree preference functions, the worst-violated constraint can be found by converting the problem to
a maximum weight b-matching on an augmented graph [1], thus an additional concavity constraint
on g is added to the optimization.

A similar approach to the stochastic SPML algorithm is also possible to perform DDML much
faster, and, by parameterizing the degree preference function only up to a fixed maximum degree,
also eliminates the dependence of the running time on the size of the graph. As in stochastic SPML,
a DDML objective can be written in terms of triplets of nodes i, neighbor j, disconnected node
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triplets k. Let A(i,j,k) denote the false graph produced by toggling the edge between nodes i and j
and the edge between nodes i and k. The DDML objective using the triplet-style constraints is

fdeg(M) =
λ

2
||M||2 − 1

|S|
∑

(i,j,k)∈S

max(F (A|X;M,S)− F (A(i,j,k)|X;M,S) + 1, 0).

The difference in scores decomposes into four scalar values, since the only differences changing A
to A(i,j,k) are that A(i,j,k) is missing edge (i, j), gains edge (i, k), the degree of node j decreases by
one and the degree of node k increases by one. Thus, the difference can be computed by evaluating
the distance from node i to node j, the distance from node i to node k, the change in degree prefer-
ence score from the degree of node j to its degree minus one, and the change in degree preference
from the degree of node k from its degree plus one. Let the degrees of all nodes be stored in array c,
such that the degree of node j is c[j]. The difference is then computable as

F (A|X;M,S)−F (A(i,j,k)|X;M,S) = DM(xi,xj)−DM(xi,xk) + x>j s(c[j]−1) − x>k s(c[k]+1).

This formulation eliminates the need for the expensive separation oracle and allows stochastic op-
timization. The gradient update for the metric parameter M is the same as in SPML. The gradient
with respect to s(c[j]−1) is xj and the gradient with respect to s(c[k]+1) is (−xk).

To retain coherence between the different degree functions, we add a requirement that the resulting
degree preference function for each node is concave. One way to enforce concavity is by stochas-
tically sampling a node i per iteration, and projecting S such that entries in x>i S are in decreasing
order.

The pseudocode for stochastic DDML is in Algorithm 4.

Algorithm 4 Stochastic degree distributional metric learning
Input: A ∈ Bn×n, X ∈ Rd×n, and parameters λ, T,B

1: M1 ← Id, S1 ← 0d,n
2: Compute degree array c s.t. c[i] =

∑
j Aij ,∀i

3: for t from 1 to T − 1 do
4: ηt ← 1

λt
5: C← 0n,n
6: S′ ← λS
7: for b from 1 to B do
8: (i, j, k)← Sample random triplet from S = {(i, j, k) | Aij = 1, Aik = 0}
9: if F (A|X;Mt,St)− F (A(i,j,k)|X;Mt,St) + 1 > 0 then

10: Cjj ← Cjj + 1, Cik ← Cik + 1, Cki ← Cki + 1
11: Cij ← Cij − 1, Cji ← Cji − 1, Ckk ← Ckk − 1
12: s′c[j] ← s′c[j] + xj
13: s′c[k] ← s′c[k] − xk
14: end if
15: end for
16: ∇t ← XCX> + λMt

17: Mt+1 ←Mt − ηt∇t
18: St+1 ← St − ηtS′
19: i← Sample random index
20: Project S so x>i S is monotonically nonincreasing
21: Optional: Mt+1 ← [Mt+1]+ {Project onto the PSD cone}
22: end for
23: return MT

Experiments Using DDML on the same Wikipedia experiments from the main paper, we score
comparable AUC to SPML. On “graph theory”, “philosophy concepts”, and “search engines”,
DDML scores AUCs of 0.691, 0.746, and 0.725. While these scores are quite close to those of
SPML, the DDML variant provides a tradeoff between running time and model richness. In the case
of the Wikipedia category “philosophy concepts”, DDML even provides a performance improve-
ment, which may indicate a clear signal in degree preference learnable from the word counts.
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Figure 4: ROC curve for various algorithms on the “philosophy concepts” category.

B Low-rank structure preserving metric learning

In this section, we present the low-rank variant of SPML first introduced in Section 2.4. The low-
rank variant computes all distances using a factorization L ∈ Rr×d of M = L>L, eliminating
the need to compute a d × d matrix. Existing metric learning algorithms use similar low-rank
factorizations [2]. Low-rank SPML has an additional parameter r, which limits the rank of M
by explicitly determining the size of L. The optional projection onto the PSD cone is no longer
necessary because L>L always forms a valid metric by construction. This optimization not convex,
but initial experimental results seem to show that the stochastic optimization avoids local minima in
practice. Algorithm 5 details the steps of low-rank SPML.

Algorithm 5 Low-rank structure preserving metric learning with nearest neighbor constraints and
optimization with projected stochastic subgradient descent
Input: A ∈ Bn×n, X ∈ Rd×n, and parameters λ, T,B, r

1: L1 ← rand(r, d) {Initialize L}
2: for t from 1 to T − 1 do
3: ηt ← 1

λt
4: C← 0n,n
5: for b from 1 to B do
6: (i, j, k)← Sample random triplet from S = {(i, j, k) | Aij = 1, Aik = 0}
7: if ||Ltxi − Ltxj ||2 − ||Ltxi − Ltxk||2 + 1 > 0 then
8: Cjj ← Cjj + 1, Cik ← Cik + 1, Cki ← Cki + 1
9: Cij ← Cij − 1, Cji ← Cji − 1, Ckk ← Ckk − 1

10: end if
11: end for
12: ∇t ← 2XCX>L>t + λLt
13: Lt+1 ← Lt − ηt∇t
14: end for
15: return LT

We run low-rank SPML on the Harvard Facebook data, fixing λ = 1e − 5 and varying the rank
parameter r. The ROC curves and AUC scores using training data for different ranks are in Figure 5.
With greater rank, SPML has more flexibility to construct a metric that fits the training data, but
lower rank provides a tradeoff between efficiency and reconstruction quality. It is clear from this
dataset that a rank of r = 5 is sufficient to represent the structure preserving metric, while reducing
the number of parameters from d2 =37,249 to d × r = 965. Training fewer parameters requires
less time, and allows low-rank SPML to handle large-scale networks with many nodes and high-
dimensional features.
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(a) Training ROC curve for different ranks
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(b) Training AUC as a function of rank

Figure 5: Performance of low-rank SPML on training data varying the rank parameter, run on a
single Facebook school. The results imply that a significantly smaller rank than the true feature
dimensionality is sufficient to fit the training data.
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