Learning a Distance Metric from a Network

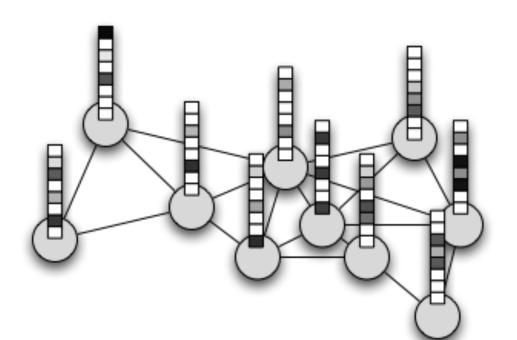
Blake Shaw Foursquare

Bert Huang University of Maryland

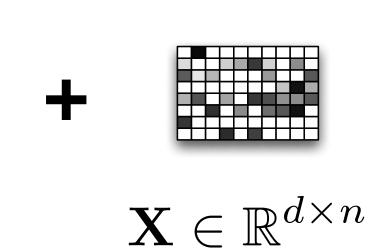
Tony Jebara Columbia University

Introduction

Real-world network data often consists of **both** node features and connectivity. Can we learn a metric that relates features to links?



Adjacency Matrix



Node Features

 $\mathbf{A} \in \mathbb{B}^{n \times n}$

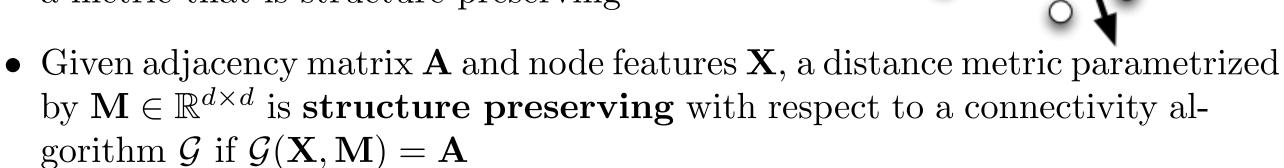
Examples:

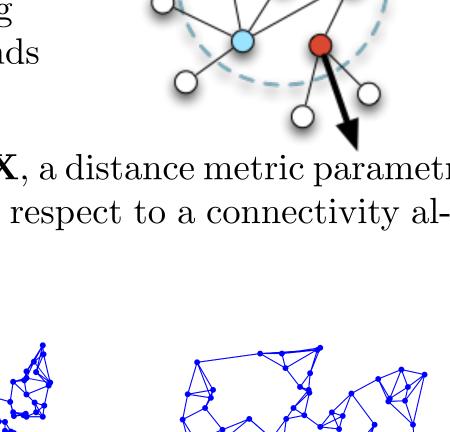
Wikipedia: node features are word-counts and links are hyperlinks Facebook: node features are profiles and links are friendships Foursquare: node features are places people visit and links are friendships

- While homophily is expected in natural networks, nodes do not simply connect based on similarity of their features alone
- Modeling independent links is insufficient, so one must account for the inherent topology of the network
- We propose learning a distance metric from large social networks that captures relationships between node features and the structure of the network: Structure Preserving Metric Learning (SPML)

Background

- Current metric learning algorithms are used for supervised tasks like classification [Chechnik et al. '10, Weinberger et al. '10]
- These methods push away "class impostors"
- SPML pushes away "graph impostors"
- Following intuition from Structure Preserving Embedding [Shaw and Jebara '09], SPML finds a metric that is structure preserving





True Features True Connectivity

Scrambled Features True Connectivity

Scrambled Features Implied Connectivity

Recovered Features Implied Connectivity

Structure Preserving Metric Learning

- Regularizing M by penalizing its Frobenius norm, SPML objective is a semidefinite program (SDP), which is too expensive for large networks
- Instead we rewrite the objective function over a large set of triplet constraints and optimize via stochastic gradient descent

$$f(\mathbf{M}) = \frac{\lambda}{2} ||\mathbf{M}||_{\mathrm{F}}^2 + \frac{1}{|S|} \sum_{(i,j,k)\in S} \max(D_{\mathbf{M}}(\mathbf{x}_i, \mathbf{x}_j) - D_{\mathbf{M}}(\mathbf{x}_i, \mathbf{x}_k) + 1, 0),$$

where
$$S = \{(i, j, k) \mid A_{ij} = 1, A_{ik} = 0\}$$

• Using the distance transformation

$$D_{\mathbf{M}}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^{\top} \mathbf{M} \mathbf{x}_i + \mathbf{x}_j^{\top} \mathbf{M} \mathbf{x}_j - \mathbf{x}_i^{\top} \mathbf{M} \mathbf{x}_j - \mathbf{x}_j^{\top} \mathbf{M} \mathbf{x}_i,$$

constraints can be written using a sparse matrix $\mathbf{C}^{(i,j,k)}$, where

$$C_{jj}^{(i,j,k)}, C_{ik}^{(i,j,k)}, C_{ki}^{(i,j,k)} = 1$$
, and $C_{ij}^{(i,j,k)}, C_{ji}^{(i,j,k)}, C_{kk}^{(i,j,k)} = -1$

• The subgradient of f at M is then

$$\nabla f = \lambda \mathbf{M} + \frac{1}{|S|} \sum_{(i,j,k) \in S_+} \mathbf{X} \mathbf{C}^{(i,j,k)} \mathbf{X}^\top,$$

where $S_{+} = \{(i, j, k) | D_{\mathbf{M}}(\mathbf{x}_{i}, \mathbf{x}_{j}) - D_{\mathbf{M}}(\mathbf{x}_{i}, \mathbf{x}_{k}) + 1 > 0 \}$

- We perform stochastic subgradient descent by randomly sampling a minibatch of triplets at each iteration
- Theorem: This method does not scale with the size of the network, only the desired approximation error!!!

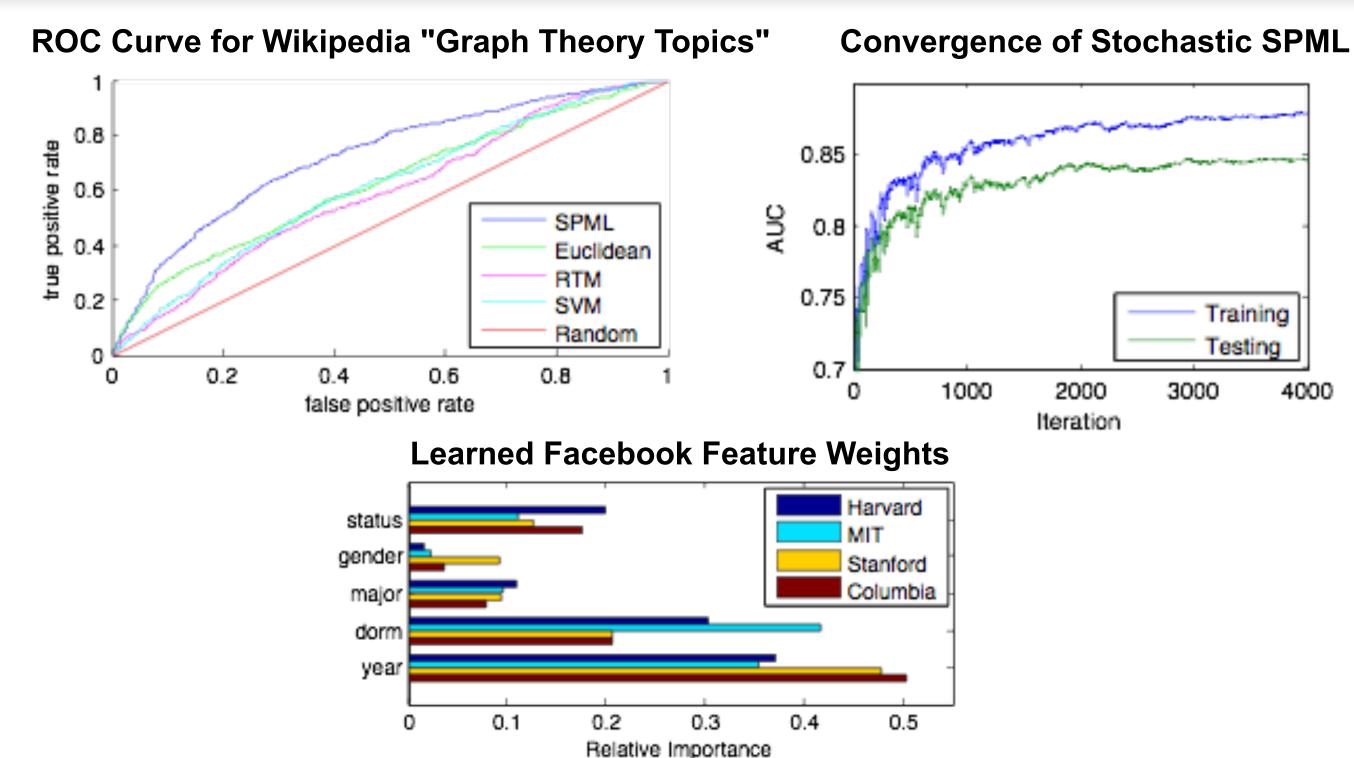
Algorithm 3 Structure preserving metric learning with nearest neighbor constraints and optimization with projected stochastic subgradient descent

Input: $\mathbf{A} \in \mathbb{B}^{n \times n}$, $\mathbf{X} \in \mathbb{R}^{d \times n}$, and parameters λ, T, B 1: $\mathbf{M}_1 \leftarrow \mathbf{I}_d$ 2: for t from 1 to T-1 do $\eta_t \leftarrow \frac{1}{\lambda t}$ $\mathbf{C} \leftarrow \mathbf{0}_{n,n}$ for b from 1 to B do $(i,j,k) \leftarrow \text{Sample random triplet from } S = \{(i,j,k) \mid A_{ij} = 1, A_{ik} = 0\}$ if $D_{\mathbf{M}_t}(\mathbf{x}_i, \mathbf{x}_i) - D_{\mathbf{M}_t}(\mathbf{x}_i, \mathbf{x}_k) + 1 > 0$ then $\mathbf{C}_{ij} \leftarrow \mathbf{C}_{ij} + 1, \ \mathbf{C}_{ik} \leftarrow \mathbf{C}_{ik} + 1, \ \mathbf{C}_{ki} \leftarrow \mathbf{C}_{ki} + 1$ $\mathbf{C}_{ij} \leftarrow \mathbf{C}_{ij} - 1, \ \mathbf{C}_{ji} \leftarrow \mathbf{C}_{ji} - 1, \ \mathbf{C}_{kk} \leftarrow \mathbf{C}_{kk} - 1$ end if end for $\nabla_t \leftarrow \mathbf{X}\mathbf{C}\mathbf{X}^{\top} + \lambda \mathbf{M}_t$ $\mathbf{M}_{t+1} \leftarrow \mathbf{M}_t - \eta_t \nabla_t$ Optional: $\mathbf{M}_{t+1} \leftarrow [\mathbf{M}_{t+1}]^+$ {Project onto the PSD cone} 15: end for 16: return M_T

Experiments

- Learn a metric using 80% of nodes as training and evaluate prediction of links for the held-out 20%, scoring AUC of ranking
- Data sources: Wikipedia data, Facebook data, Foursquare data
- Compare with existing methods: Euclidean distance, Relational Topic Models (RTM), and Support Vector Machines (SVM)

		$\mid n \mid$	m	d	Euclidean	RTM	SVM	SPML
Wikipedia	Graph Theory	223	917	6695	0.624	0.591	0.610	$\overline{0.722}$
	Philosophy Concepts	303	921	6695	0.705	0.571	0.708	0.707
	Search Engines	269	332	6695	0.662	0.487	0.611	$\boldsymbol{0.742}$
	Philosophy Crawl	100,000	4,489,166	7702	0.547	_	_	0.601
H	Harvard	1937	48,980	193	0.764	0.562	0.839	0.854
	MIT	2128	$95,\!322$	173	0.702	0.494	0.784	0.801
	Stanford	3014	$147,\!516$	270	0.718	0.532	0.784	$\boldsymbol{0.808}$
4SQ	Columbia	3050	118,838	251	0.717	0.519	0.796	0.818
	Foursquare	83	4322	24082	0.760	0.501	0.710	0.829



Extensions

- To alleviate the cost of optimizing over the full **M** matrix in high dimensional problems, we can limit the optimization to allow nonzero entries only along the diagonal of \mathbf{M}
- Alternatively, we can optimize a fixed-sized, low-rank factorization of **M** by rewriting $\mathbf{M} = \mathbf{L}\mathbf{L}^{\top}$ and optimizing \mathbf{L}
- We can simultaneously learn feature-dependent degree preference functions which adds dependency between the node feature and its structural degree (see NIPS '11 workshop talk)

Learning a Degree-Augmented Distance Metric from a Network Bert Huang, Blake Shaw, Tony Jebara at NIPS Workshop -- Beyond Mahalanobis: Supervised Large-Scale Learning of Similarity