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• SPML objective is a semidefinite program (SDP), which is too expensive
for large networks

• Instead we rewrite the objective function over a large set of triplet con-
straints and optimize via stochastic gradient descent
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where S+ = {(i, j, k)|DM(xi,xj)�DM(xi,xk) + 1 > 0}

• We perform stochastic subgradient descent by randomly sampling a mini-
batch of triplets at each iteration

• Theorem: This method does not scale with the size of the network, only
the desired approximation error!!!
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• To alleviate the cost of optimizing over the full M matrix in high dimen-
sional problems, we can limit the optimization to allow nonzero entries
only along the diagonal of M

• Alternately, we can optimize a fixed-sized, low-rank factorization of M

• We can simultaneously learn feature-dependent degree preference functions
which adds dependency between the node feature and its structural degree
(see NIPS ’11 workshop talk)

3

Learning a Distance Metric from a Network –

Poster Text

December 5, 2011

1 Distance Metrics for Networks

Real-world network data often consists of both node features and connectivity,
so can we learn a metric that relates features to links?
Examples:
Facebook: node features are profiles and links are friendships
Wikipedia: node features are word-counts and links are hyperlinks

• While homophily is expected in natural networks, nodes do not simply
connect based on similarity of their features alone

• Modeling independent links is insu�cient, so one must account for the
inherent topology of the network

• We propose learning a distance metric from large social networks that cap-
tures relationships between node features and the structure of the network:
Structure Preserving Metric Learning (SPML)

Background

• Current metric learning algorithms are used for
supervised tasks like classification [Chechnik
et al. ’10, Weinberger et al. ’10]

• These methods push away ”class impostors”

• SPML pushes away ”graph impostors”

• Following intuition from Structure Preserving
Embedding [Shaw and Jebara ’09], SPML finds
a metric that is structure preserving

• Given adjacency matrixA and node featuresX, a distance metric parametrized
by M 2 Rd⇥d is structure preserving with respect to a connectivity al-
gorithm G if G(X,M) = A
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Convergence of Stochastic SPMLROC Curve for Wikipedia "Graph Theory Topics"

Learned Facebook Feature Weights

Table 1: Wikipedia (top), Facebook (middle), Foursquare (bottom) dataset and experiment
information. Shown below: number of nodes n, number of edges m, dimensionality d, and
AUC performance.

n m d Euclidean RTM SVM SPML
Graph Theory 223 917 6695 0.624 0.591 0.610 0.722
Philosophy Concepts 303 921 6695 0.705 0.571 0.708 0.707
Search Engines 269 332 6695 0.662 0.487 0.611 0.742
Philosophy Crawl 100,000 4,489,166 7702 0.547 – – 0.601
Harvard 1937 48,980 193 0.764 0.562 0.839 0.854
MIT 2128 95,322 173 0.702 0.494 0.784 0.801
Stanford 3014 147,516 270 0.718 0.532 0.784 0.808
Columbia 3050 118,838 251 0.717 0.519 0.796 0.818
Foursquare 83 4322 24082 0.760 0.501 0.710 0.829
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a metric that is structure preserving
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Algorithm 1 Structure preserving metric learning with nearest neighbor con-
straints
Input: A 2 Bn⇥n, X 2 Rd⇥n, and parameter �
1: K = {M ⌫ 0, DM(xi,xj) � (1�Aij)maxl(AilDM(xi,xl)) + 1� ⇠ 8i,j}
2: M̃ argminM2K

�
2 ||M||2F + ⇠ {Found via SDP}

3: return M̃

Algorithm 2 Structure preserving metric learning with cutting-plane con-
straints
Input: A 2 Bn⇥n, X 2 Rd⇥n, connectivity algorithm G, and parameters �,
1: K = {M ⌫ 0}
2: repeat

3: M̃ argminM2K
�
2 ||M||2F + ⇠ {Found via SDP}

4: Z̃ 2X>
M̃X� diag(X>

M̃X)1> � 1diag(X>
M̃X)>

5: Ã argmaxÃ tr(Z̃>
Ã) s.t. Ã 2 G {Find worst violator}

6: if |tr(Z̃>
Ã)� tr(Z̃>

A)| �  then

7: add constraint to K : tr(Z>
A)� tr(Z>

Ã) > 1� ⇠
8: end if

9: until |tr(Z̃>
Ã)� tr(Z̃>

A)|  
10: return M̃

Algorithm 3 Structure preserving metric learning with nearest neighbor con-
straints and optimization with projected stochastic subgradient descent

Input: A 2 Bn⇥n, X 2 Rd⇥n, and parameters �, T, B
1: M1  Id

2: for t from 1 to T � 1 do

3: ⌘t  1
�t

4: C 0n,n

5: for b from 1 to B do

6: (i, j, k) Sample random triplet from S = {(i, j, k) | Aij = 1, Aik = 0}
7: if DMt(xi,xj)�DMt(xi,xk) + 1 > 0 then

8: Cjj  Cjj + 1, Cik  Cik + 1, Cki  Cki + 1
9: Cij  Cij � 1, Cji  Cji � 1, Ckk  Ckk � 1

10: end if

11: end for

12: rt  XCX

> + �Mt

13: Mt+1  Mt � ⌘trt

14: Optional: Mt+1  [Mt+1]+ {Project onto the PSD cone}
15: end for

16: return MT
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• To alleviate the cost of optimizing over the full M matrix in high dimen-
sional problems, we can limit the optimization to allow nonzero entries
only along the diagonal of M

• Alternatively, we can optimize a fixed-sized, low-rank factorization of M
by rewriting M = LL

> and optimizing L

• We can simultaneously learn feature-dependent degree preference functions
which adds dependency between the node feature and its structural degree
(see NIPS ’11 workshop talk)

3

• As shown in the previous section on SPE, we can preserve graph structure
via a set of linear constraints on distances defined in terms of a kernel K:

• We can rewrite distances in terms of the data BLAH and a Mahalanobis
distance metric, parameterized by BLAH :

• Use same linear structure preserving constraints from SPE

• Running kNN using metric should yield adjacency matrix

In order to better model and understand these networks, we present structure
preserving metric learning (SPML), an algorithm for learning a Mahalanobis
distance metric from a network such that the learned distances are tied to
the connectivity structure of the network. Instead, networks are inherently
structural, and thus SPML directly considers the structure.

We demonstrate a method for optimizing SPML based on stochastic gradient
descent which removes the running-time dependency on the size of the network
and allows the method to easily scale to networks of thousands of nodes and
millions of edges.

• Learn a metric using 80% of nodes as training and evaluate prediction of
links for the held-out 20%, scoring AUC of ranking

• Data sources: Wikipedia data, Facebook data, Foursquare data

• Compare with existing methods: Euclidean distance, Relational Topic
Models (RTM), and Support Vector Machines (SVM)

2 Outline for poster

Intro/Motivation section:
explain premise, have a picture of graph with links and features on the nodes –
say we want to learn how the features and links interact

Background section:
Show the malahanobis parameterization, say we want to learn M, explain struc-
ture preserving constraints,

Algorithms section:
Show our algos, I think fine to past the tables

3 Algorithms + Table
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