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Motivation: Similarity in Networks

• Homophily occurs in natural networks: 
neighbors are similar

• Learning must account for structural 
nature of networks
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Outline
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Problem Formulation

• Given: node feature matrix X and 
adjacency matrix A

• Learn the inherent distance metric 
related to the homophily of the network

X 2 Rd⇥nA 2 Bn⇥n

Adjacency Matrix Node Features

+



• Connectivity algorithms: k-nn, 
b-matching, MST,    -neighborhoods

• Distances are structure-preserving if the 
connectivity algo outputs the true 
connectivity [SJ09]

• Parameterize distances 

Structure Preserving Metric Learning

DM(xi,xj) = (xi � xj)
>
M(xi � xj)

✏



Structured Prediction Motivation
• Constraints: true      must score higher 

than any feasible adjacency matrix    

• Frobenius regularization -> SVM  

• Cutting plane doesn’t scale: requires 
iterating SDP and separation oracle

• Relaxation: 

• (Optional) drop PSD constraint

• only consider small changes to 
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Stochastic SPML (k-nn)
• Consider only changes along node-

neighbor-impostor triplets

• Difference between scores is only along 
triplet edges

• Randomly sample triplets and follow 
stochastic subgradients

• (Periodically project to PSD)

T = {(i, j, k)|Aij = 1, Aik = 0}
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Out-of-Sample Extension

• Connectivity algorithm is fixed: 
structural parameters must be known

• e.g., k = degree of training nodes

• What degree should new nodes have?

• Feature-dependent degree 
preference functions



Degree Distributional Metric Learning

• Simultaneously learn feature-dependent 
degree preference functions such that 
the connectivity algorithm maximizes

• Linear deg. pref. score

• Regularizing w/       , DDML can also be 
a structural SVM

F (A|X;M,S) = �
X

ij

AijDM(xi,xj) +
X

i
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Stochastic DDML
• Triplet-based loss function:

• Score difference cancels 
except for four quantities:

• (Project toward concave degree prefs)

F (A|X;M,S)� F (A(ijk)|X;M,S) =

DM(xi,xk)�DM(xi,xj) + x

>
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Learner Running Time
• Limit the maximum degree so the number 

of parameters for degree preference 
function is constant

• Subgradient computation:
         for SPML and                    for DDML 

• Learner reduces to PEGASOS algorithm 
(Shalev-Shwartz et al. ’07) on one-class SVM:     

                 time for    -convergence

O(d2 + c
max

)O(d2)
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• For concave degree preferences, the 
connectivity algorithm reduces to an       
combinatorial algorithm (Huang & Jebara, ’09)

• Or rank edges by degree-augmented 
distance

Link Prediction from DDML

O(N3)

c

d
a

b DM(b, c)

g(b, 2)� g(b, 1)

g(c , 3)� g(c , 2)



Experiments

• Wikipedia: word counts and hyperlinks

• Facebook: status, gender, major, dorm, 
year, and friendship links [Traub, et al., '11]

• Randomly hold out 20% of nodes and 
incident edges for testing



Experiment Results

n m d Euclid. RTM SVM SPML DDML
Graph Theory 223 917 6695 0.624 0.591 0.610 0.722 0.691*
Philosophy Concepts 303 921 6695 0.705 0.571 0.708 0.707 0.746*
Search Engines 269 332 6695 0.662 0.487 0.611 0.742 0.725*
Philosophy Crawl 100k 4m 7702 0.547 – – 0.601 0.562
Harvard 1937 48k 193 0.764 0.562 0.839 0.854 0.848
MIT 2128 95k 173 0.702 0.494 0.784 0.801 0.797
Stanford 3014 147k 270 0.718 0.532 0.784 0.808 0.810
Columbia 3050 118k 251 0.717 0.519 0.796 0.818 0.821
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Figure 4: ROC curve for various algorithms on the “philosophy concepts” category.

B Low-rank structure preserving metric learning

In this section, we present the low-rank variant of SPML first introduced in Section 2.4. The low-
rank variant computes all distances using a factorization L ⌅ Rr�d of M = L⇥L, eliminating
the need to compute a d ⇥ d matrix. Existing metric learning algorithms use similar low-rank
factorizations [2]. Low-rank SPML has an additional parameter r, which limits the rank of M
by explicitly determining the size of L. The optional projection onto the PSD cone is no longer
necessary because L⇥L always forms a valid metric by construction. This optimization not convex,
but initial experimental results seem to show that the stochastic optimization avoids local minima in
practice. Algorithm 5 details the steps of low-rank SPML.

Algorithm 5 Low-rank structure preserving metric learning with nearest neighbor constraints and
optimization with projected stochastic subgradient descent
Input: A ⌅ Bn�n, X ⌅ Rd�n, and parameters ⇥, T, B, r

1: L1 ⇤ rand(r, d) {Initialize L}
2: for t from 1 to T � 1 do
3: �t ⇤ 1

�t
4: C ⇤ 0n,n

5: for b from 1 to B do
6: (i, j, k) ⇤ Sample random triplet from S = {(i, j, k) | Aij = 1, Aik = 0}
7: if ||Ltxi � Ltxj ||2 � ||Ltxi � Ltxk||2 + 1 > 0 then
8: Cjj ⇤ Cjj + 1, Cik ⇤ Cik + 1, Cki ⇤ Cki + 1
9: Cij ⇤ Cij � 1, Cji ⇤ Cji � 1, Ckk ⇤ Ckk � 1

10: end if
11: end for
12: �t ⇤ 2XCX⇥L⇥

t + ⇥Lt

13: Lt+1 ⇤ Lt � �t�t

14: end for
15: return LT

We run low-rank SPML on the Harvard Facebook data, fixing ⇥ = 1e � 5 and varying the rank
parameter r. The ROC curves and AUC scores using training data for different ranks are in Figure 5.
With greater rank, SPML has more flexibility to construct a metric that fits the training data, but
lower rank provides a tradeoff between efficiency and reconstruction quality. It is clear from this
dataset that a rank of r = 5 is sufficient to represent the structure preserving metric, while reducing
the number of parameters from d2 =37,249 to d ⇥ r = 965. Training fewer parameters requires
less time, and allows low-rank SPML to handle large-scale networks with many nodes and high-
dimensional features.
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Summary + Open Problems

• SPML: metrics consistent with structural behavior 
of networks

• DDML: explicit degree preference functions that 
are feature-dependent

• Linear constraints and Frobenius regularization: 
constant time convergence

• Other applications of structure-preserving metric

• More natural regularizer?

• Stopping criterion

• Large-scale prediction

+ Thanks!


