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Motivation: Similarity in Networks

e Homophily occurs in natural networks:
neighbors are similar

e | earning must account for structural
nature of networks
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Problem Formulation

Adjacency Matrix Node Features

e (Given: node feature matrix X and
adjacency matrix A

e | earn the inherent distance metric
related to the homophily of the network



Structure Preserving Metric Learning

e Connectivity algorithms: k-nn,
b-matching, MST, ¢-neighborhoods

e Distances are structure-preserving if the
connectivity algo outputs the true
connectivity [SJ09]

e Parameterize distances

DM(Xiaxj) — (Xz' — Xj)TM(Xz‘ — Xj)



Structured Prediction Motivation

e Constraints: true A must score higher
than any feasible adjacency matrix A

e Frobenius regularization -> SVM

e Cutting plane doesn’t scale: requires
iterating SDP and separation oracle

e Relaxation:
¢ (Optional) drop PSD constraint

e only consider small changes to A



Stochastic SPML (k-nn)

e Consider only changes along node-
neighbor-impostor triplets

T = {(i,j,k)|A;; = 1, Ay, = 0}

e Difference between scores is only along
triplet edges
%HMH%‘ | |%| Z h(DM(Xiaxj)_DM(Xivxk)+1)
(ijk)eT
e Randomly sample triplets and follow
stochastic subgradients

e (Periodically project to PSD)



Out-of-Sample Extension

e Connectivity algorithm is fixed:
structural parameters must be known

®* e.g., k =degree of training nodes
e \WWhat degree should new nodes have?

e Feature-dependent degree
preference functions



Degree Distributional Metric Learning

e Simultaneously learn feature-dependent
degree preference functions such that
the connectivity algorithm maximizes

F(A|X;M,S) ZA%JDM X, X —I—Zg il|xi; S)
e Linear deg. pref. score g(klx;S) Zx S

e Regularizing w/ IISll, DDML can also be
a structural SVM



Stochastic DDML

e Triplet-based loss function:

2
gndlgz(\\MH +118I1%)+

- > hF(AX;M,S) — F(AWP[X; M, S) + 1)

17keT
e Score difference cancels
except for four quantities:

F(AIX;M,S) — F(AUM|X; M, S) =

D (%i, X)) — Dni(%i,X;5) + Xg S(ek]+1) — X5 S(elj]—1)

* (Project toward concave degree prefs)



Learner Running Time

e | imit the maximum degree so the number
of parameters for degree preference
function is constant

e Subgradient computation:
O(d?) for SPML and O(d* + cmax) for DDML

e | earner reduces to PEGASOS algorithm
(Shalev-Shwartz et al. '07) ON onhe-class SVM:

1

O (J) — time for e-convergence



Link Prediction from DDML

e For concave degree preferences, the
connectivity algorithm reduces to an O(N?)
combinatorial algOrithm (Huang & Jebara, '09)

e Or rank edges by degree-augmented
distance

D|\/|(b, C)
g(b,2) —g(b 1)

g(c.3) —g(c,2)




Experiments

o Wikipedia: word counts and hyperlinks

e Facebook: status, gender, major, dorm,
year, clgle friendShip lINKS (Traub, et at., '11]

e Randomly hold out 20% of nodes and
incident edges for testing



Wikipedia

Facebook

Experiment Results
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n m d Euclid. RTM SVM SPML-. DDML
Graph Theory 223 917 6695 | 0.624 0.591 0.610 0.722 0.691*
Philosophy Concepts | 303 921 6695 | 0.705 0.571 0.708 0.707 0.746*
Search Engines 269 332 6695 | 0.662 0.487 0.611 0.742 0.725%*
Philosophy Crawl 100k 4m 7702 | 0.547 - — 0.601  0.562
Harvard 1937 48k 193 0.764  0.562 0.839 0.854  0.848
MIT 2128 95k 173 0.702 0.494 0.784 0.801 0.797
Stanford 3014 147k 270 0.718 0.532 0.784 0.808  0.810
Columbia 3050 118k 251 0.717 0.519 0.796 0.818 0.821




Summary + Open Problems
+ Thanks!

e SPML: metrics consistent with structural behavior
of networks

e DDML: explicit degree preference functions that
are feature-dependent

e |inear constraints and Frobenius regularization:
constant time convergence

e (Other applications of structure-preserving metric
e More natural regularizer?
e Stopping criterion

e | arge-scale prediction



