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In addition to its classical applications, recent work has demonstrated weighted b-matching’s utility as
a preprocessing step for spectral clustering [3]. We formulate the weighted b-matching objective function
as an equivalent probability distribution function and show that belief propagation (BP) on its graphical
model converges to the optimal b-matching. Standard belief propagation on our graphical model cannot
be computed in polynomial time, but we introduce an algebraic method to circumvent the combinatorial
message updates. Empirically, the resulting algorithm is on average faster than optimizing using the
open source GOBLIN library [4], while scaling at the same asymptotic rate of O(bn3).

This work generalizes and extends previous work on BP to solve maximum weight matching [1]
(which is equivalent to b-matching when b = 1). It uses a similar approach to that of [2], where we
describe a probability distribution for a combinatorial optimization on which standard BP is intractable,
and we compute the belief propagation in closed form, producing an efficient algorithm.

Consider a bipartite graph G = (U, V,E) such that U = {u1, . . . , un}, V = {v1, . . . , vn}, and
E = (ui, vj),∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , n}. Let A be the weight matrix of G such that the weight of
edge (ui, vj) is Aij . Let a b-matching be characterized by a function M(ui) or M(vj) that returns the set
of neighbor vertices of the input vertex in the b-matching. The b-matching objective function can then
be written as
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 s.t. |M(ui)| = b, ∀i ∈ {1, . . . , n}
|M(vj)| = b, ∀j ∈ {1, . . . , n} .

If we define variables xi ∈ X and yj ∈ Y for each vertex such that xi = M(ui), and yj = M(vj), we
can define the following functions:

φ(xi) = exp(
∑
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Aij), φ(yj) = exp(
∑
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Aij), ψ(xi, yj) = ¬(vj ∈ xi ⊕ ui ∈ yj).

Using the potentials and pairwise clique functions, we can write out the weighted b-matching objective
as a probability distribution p(X, Y ) ∝ exp(BM(G,M)). [1]
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We maximize this probability function using the max-product algorithm, which passes messages along
the pairwise cliques. The max-product algorithm iteratively passes messages, which are vectors over
settings of the variables, between dependent variables and stores beliefs, which are estimates of the
max-marginal for each variable. We update messages and beliefs with the following:
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