Approximating the Permanent with Beliet Propagation

Seconds
- N w

5 10 15 20 25 30 35 40 45 50
N

(a) Running time

Estimated Permanent

o]
o

(o2} ~
o o
T T
N
o

lterations

a
o
T

‘ ‘ ‘ ‘ : 10 20 30 40 50
5 10 15 20 25 30 35 40 45 50 N
N

(b) Iterations (c) Approximate Permanent

Figure 1: (a) Average running time until convergence of BP for 5 < n < 50. (b) Number of
iterations. (c) Approximate permanent output by Bethe method (y-axis is log scale).

1

Overview

This work describes a method of approximating non-negative matrix permanents effi-
ciently using belief propagation (BP).

While the determinant of an n X n matrix can be evaluated exactly in sub-cubic time,
computing the permanent of an n X n matrix is #P-complete

Significant progress has produced an FPRAS that can handle arbitrary n X n matrices
with non-negative entries [5]. The method uses Markov chain Monte Carlo and only
requires a large polynomial order of samples.

We formulate a probability distribution whose partition function is exactly the perma-
nent, then use Bethe free energy to approximate this partition function.

x 10 x 10 x 10 x 10

(&
S ol
» (¢l
» o

w
w
w

Determinant

N
N
N

Bethe Approximation
Sampling Approximation
Diagonal Product

-
-
-

o
o

0
0 2 4 2 4 0 2 4 2 4

True Permanentx 10" True Permanentx 10" True Permanentx 10'® True Permanentx 10"

o

o
o

Figure 2: Approximate permanent for N = 8 vs. true permanent using four methods.
On these small matrices, sampling achieved better absolute accuracy, but Bethe is more
monotonic. See Table 1 for Kendall distances.

New York Academy of Sciences Machine Learning Symposium 2007

Bert Huang, Tony Jebara
Columbia University

2

The Permanent as a Partition Function

Given an n X n non-negative matrix W, the matrix permanent is

> Wi (1)

TES, 1=1

Sy, is the symmetric group on the set {1,...,n}: the set of all permutations of the
columns of W.

W defines some function f(m; W) over S,,. The permanent can also be written

per(W)= > f(m;W), where f(m;W)= HWW@.

TESH

The output of f is non-negative, so we consider f a density function over the space of
all permutations.

We can factor this density function over permutations. Max-product loopy BP on the
resulting factor graph has guaranteed convergence [1], but we will use sum-product.

Consider permutation assignment variables X = {x1,...,2,}, and Y = {y1,...,yn},
such that z;,y; € {1,...,n}, Vi, .

(@) = V Wiz, 0Ys) = /Wy, ¥(@iy;) =100 =z @ i = y5)).

I() is an indicator function such that I(true) = 1 and [I(false) = 0. Then the 1
function outputs zero whenever any pair (x;, yj) have settings that cannot come from
a true permutation.

Given these definitions, we can define the equivalent density function to f(7):

f(X,Y) = Hw(:ci, i) [[e(@e)o(u), per(W) =) f(X,Y) (2)

Finally, we treat density function f as a probability, adding a normalization constant
to it:

p(X.Y) = s [T ota o) [T ot@oton) ®)

The normalizer or partition function Z (W) is the sum of f(X,Y") for all possible inputs
X,Y. Therefore Z(W) = per(W)

4

Belief Propagation

We use the dampened belief propagation described in [3], which the author derives as
a local minimization of Bethe free energy.

Belief Propagation is a message passing algorithm that iteratively updates messages
between variables that define the local beliefs.

Let my,(y;) be the message from z; to y;. The beliefs are defined by the messages:

b(zi, ;) = %M% vi)o(@)o () | [mue (@) [] e (w5)
k£j O£

b(r) = o) [T, b(u) = 56() [T e 0) (6

k

In each iteration, the messages are updated according to the following formula:

My (Y;) = Z P(@:) (i, y5) Hmyk () (7)

Ti k#j

We dampen the messages to encourage a smoother optimization in log-space.

new

I, (97) = nmy, (g;) + € [lm2 () — nmy, (y,)] (®)

€ is a dampening rate as in [3] and dampen in log space because the messages of BP
are exponentiated Lagrange multipliers of Bethe optimization.

n | Bethe Approximation | Random Sampling | Determinant | Diagonal
10 0.00023 0.0248 0.3340 0.0724
8 0.0028 0.1285 0.4995 0.4057
5 0.0115 0.0914 0.4941 0.3834

Table 1: Normalized Kendall distances between the rankings of random matrices via their
true permanents and the rankings via approximation. See Fig. 2 for visualization.

3

Bethe Free Energy

The minimum of Gibbs Free Energy, which is a function over proposal distributions
b, is the negative log-partition function —In Z.

Minimizing the Gibbs free energy is intractable because it requires computations over
the entire state space to compute necessary entropy and average energy terms.

Instead, we approximate by summing the energies and entropies of marginals or pseudo-
marginals of subsets of the variables and subtracting out overcounted regions. This is
called the Bethe approximation or Bethe free energy.

Given a belief state b:

Fpethe = — Z Z b(s, y5) In (i, ;) o (s py;) + Z Z b(zi, y;) Inb(z;, y;)

—(n—1) Z > b(x;) Inb(x;) — (n—1) Z > b(y;) Inb(y;) (4)

Belief state b is a set of pseudo-marginals that are only locally consistent, but do not
have to be true marginals of a single global distribution. The marginals obey

> b(wiyy) =blx), > blziy;) =bly), Vi, g, Y blxiy;) = 1.
Yj g Li)Yj

Since belief propagation has been shown to minimize Bethe free energy [3, 7, 8], we
will use the approximation

per(W) ~ exp (— mbin FBethe(b)> (5)

4.1

Algorithmic Speedups

Quickly updating messages is challenging since each variable sends a message vector
of length-n to n neighbors, so there are 2n® values to update each iteration. We need
to avoid redundant computation.

In Equation (7), the only factor affected by the value of y; is the ¢ function.

Therefore, we can explicitly define the update rules based on the v function, taking
advantage of the fact that the computation for each setting of y; is similar. When
y; = ¢, we have:

mye (y; = @) = % ((Z ¢(;) Hmyk(ilfi)) = olx) [[(xz')> :

k#£j TiF]J k#j
When y; # 1,
Mg, (Y; # 1) = % ((Z o(x:) | [(fﬁi)> — ¢(z; = §) | [(i = j)) :
x; k#j k#j

In each of these formulas, the expensive computation is the sum over all settings of x;
of the product of all but one incoming messages. Computing this as it is written takes
O(n?) operations just to perform one of the 2n® updates. Instead, we compute parts
of the formulas in advance:

9(z) = 3(@) [[rion(@s)y By = 0220 (9)

After computing these values and storing them, we can substitute these reusable values
into the full message update formula, without having to recompute them for each entry.

new(, _ ;) — l g(x;) _ g(z;) :i g(x; = j)
gty =0 Z«;%MJm%mm)‘A@M=M 10

L) = 1 glz:) \ glzi=y) 1 - glzi=1)
mxi(y] 7&) 7 ((~ myj (513@)> myj (CCZ _)> 7 (hyj—>-’13‘i myj (CL’Z _]>)

We can now update all message vectors in O(n?) time per iteration.

Finally, we compute the beliefs

9(x:)g(y;)
My, (:El)mxz (y.7>

bs) = Zo(e). buy) = o). brey) = Sy

(As a caveat, Equation (9) requires that m, (z;) is non-zero. We can fix this by adding
a tiny constant.)

5.2

Accuracy of Approximation

We evaluate the accuracy of our algorithm by computing 1000 random matrices of sizes
5, 8 and 200 matrices of size 10.

We computed the true permanents of these matrices, then computed approximate
permanents using

— our Bethe approximation

— sampled random permutations (summing their products and scaling)

— the determinant

— the scaled product of the diagonal entries.
To be able to compare to the true permanent, we had to limit this analysis to small
matrices. However, since MCMC sampling methods such as in [5] take O(n'?) time to

reach less than some € error, we expect that as matrix size increases, the achievable
precision decreases.

In our results, determinants and the products of diagonals are neither accurate nor
consistent approximations of the permanent.

Sampling is accurate w. r. t. absolute distance to the permanent.

Bethe approximation seems the most consistent. While the approximations of the per-
manent are off by a large amount, they seem to be consistently off by some monotonic
function of the true permanent.

In many cases, this virtue is more important than the absolute accuracy, since most
applications requiring a matrix permanent likely compare the permanents of various
matrices.

To measure the monotonicity and consistency of these approximations, we consider the
Kendall distance [2] between the ranking of the random matrices according to the true
permanent and their rankings according to the approximations.

The Kendall distance between two permutations m; and 7y is
2 v . . | .
Dxendan (71, m2) = m ;j;11((m(Z) < mi(f)) A (ma(i) > ma(j))) -
(the total number of pairs where 7; and 7y disagree on the ordering.)

Table 1 lists the Kendall distances between the true permanent ranking and the four
approximations. The Bethe ranking is always closer to the true ranking than sampling.

6

Discussion

We have described an algorithm based on BP over a specific distribution that allows
an efficient approximation of the # P matrix permanent operation.

We plan to explore higher order approximations Kikuchi free energies. Unfortunately
the structure of our graphical model causes higher order interactions to become expen-
sive quickly, since each variable has exactly /N neighbors.

We attempted convexity analysis of the Bethe free energy of our distribution, but found
that our formulation did not meet the sufficient conditions provided in [4, 6].

However, our empirical evidence implies that BP always converges, we suspect that we
have not yet correctly analyzed the true space traversed during optimization.

In particular, the distribution described by Equation 3 is defined over the set of all n™
possible X, Y states, while it is only nonzero in n! states.

Any beliefs derived from belief propagation obey similar constraints, so it is reasonable
to suspect that careful analysis of the optimization with special attention to the oddities
of the distribution could yield more promising theoretical guarantees.

5

5.1

Experiments

Convergence and Running Time

We ran belief propagation to approximate the permanents of random matrices of sizes
n = [5,50], recording the total running time and the number of iterations to conver-
gence.

These experiments were run on a 2.8 Ghz Intel Xeon processor. The code is in C' and
compiled using gcc version 3.4.6.

References

[1] M. Bayati, D. Shah, and M. Sharma. Maximum weight matching via max-product belief prop-
agation. In Proc. of the IEEE International Symposium on Information Theory, 2005.

[2] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists, 2003.

[3] T. Heskes. Stable fixed points of loopy belief propagation are local minima of the bethe free
energy. In S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural Information
Processing Systems 15, pages 343—-350. MIT Press, Cambridge, MA, 2003.

[4] T. Heskes. Convexity arguments for efficient minimization of the bethe and kikuchi free energies.
Journal of Artificial Intelligence Research, 26, 2006.

[5] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for the
permanent of a matrix with nonnegative entries. J. ACM, 51(4):671-697, 2004.

6] S.

Tatikonda and M. Jordan. Loopy belief propagation and Gibbs measures. In Proc. Uncer-

tainty in Artificial Intell., vol. 18, 2002.

[7] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Constructing free-energy approximations and gen-
eralized belief propagation algorithms. IEEE Transactions on Information Theory, 51(7), 2005.

[8] A. L. Yuille. Ceccp algorithms to minimize the bethe and kikuchi free energies: Convergent
alternatives to belief propagation. Neural Computation, 14(7):1691-1722, 2002.

