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Overview

e Given information about n nodes, what is a likely network structure?

e An ideal solution should be aware of structure, not just n X n independent

estimates.

e One critical structural measure in networks is the degree distribution, which

has played an important role in many network analyses [1].

e \We propose modeling structure using a degree distributional metric:

— A similarity function for pairs of nodes,

— A non-stationary degree preference function dependent on the attributes

of each node:

— E.g., in the Linkedln network, an individual whose job area is “Software
Sales” is likely to have more connections than an individual whose area is

“Software Programmer” .

e We learn the parameters algorithmically for these functions from training data.

Degree Distributional Metric Learning

e The similarity function f(x;, x;; M) = x Mx; takes two nodes x;, and x; and

outputs a score, parameterized by matrix M.

e The degree preference function g(x%, b;S) = 2521 s.x~ takes a node x; and

a degree b and outputs a score, parameterized by matrix S.

e Together, the score function for any directed graph encoded with adjacency

matrix A for data matrix X is
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e Goal: learn parameters M, S, T that are consistent with a training data.

e Regularize with L, Frobenius norm, and try to find parameters such that the
true graphs score at least A(A%, A) = ZU‘A/_{#;\_]_ 1/(nZ — ny) better than all
ij I
possible false graphs.

e The optimization is a form of a structural support vector machine (SVM),

which is proven to be efficiently solvable with a cutting-plane method [4]:

— lteratively add the worst violated constraint (the highest-scoring false
graph), A¥ = argmax, F(A|X, M, S, T) + A(A¥, A)
— Computed using procedure in [3].

— Re-optimize with newly added constraint.
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Figure 1. Left: reconstruction performance metrics on synthetic graph
experiments. Right: True M matrices and learned M matrices .

Experiments

e \We compare against two weaker algorithms: vanilla SVM and M-learning:

— SVM receives the element-wise product of node-node pairs and classifies

these according to whether they share and edge or not:

{Ixf (1) (1), ..., %7 (D)x(D)], (A%},

— M-learning only estimates the similarity parameter M, not leveraging de-

gree information.

Synthetic Graphs

e Using randomly sampled node data, we generate graphs under models with

Increasing complexity:
— Graphs generated according to inner product of feature vectors (corre-
sponds to SVM),
— graphs generated according to full M matrix (corresponds to M-learning),

— graphs generated according to full M and degree preference functions

(corresponds to full DDML).

e Since DDML generalizes each of the simpler models, it is able to learn nearly

perfectly the true parameters we used to generate graphs, whereas each other

Algorithm 1 Degree Distributional Metric Learning.

input {(X!,Al),..., (XN AN C

1: Initialize M, S, T {e.g., M < T and S, T « |0]}

2: Constraint set C < () {or optionally add concavity constraints)}

3: repeat
(M, S, T,€) « argmingg s r.co0 3 (IIM]] +[[S]| + || T|]) + C€ s.t. €
(Optional) Project M onto PSD cone
for k=1to N do

A« argmax, F(A|X,M,S, T)+ A(A* A)

end for

C e CU% Y, |[FAFXE M,S,T) - F(AMX*, M,S,T)| > £ 55, A(AF, &) — ¢
10: until £ 37 A(AF A) - LSV [F(Akyxk,m, S, T) — F(AF|X* M, s,T)} <e+¢

model fails.
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Figure 2. Convergence of DDML algorithm.

Wikipedia Categories

e We learn from a set of Wikipedia categories and their interconnections and

try to predict the graphs of new categories.

e For each category, we collected the count of word-occurrences in articles listed
on the main category page and directed links between the articles within each
category. We squash the word counts with the square root function and reduce

dimensionality to 20 by applying non-negative matrix factorization [2].

e \We train the algorithms on categories “linear algebra topics”, and “mathe-
matical functions”, and test on “computer science topics’, “data structures”,

and “graph theory topics’.

e DDML predictions produce an average Fi-score of 0.1255, M-learning scores
0.0930, and SVM scores 0.0534 and a fully-connected graph scores 0.0561.
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Figure 3. Receiver Order Characteristic curves of
various algorithms on Wikipedia lists

Latest Updates and Future Work

e We have developed an alternate learning algorithm that uses stochastic gra-

dient descent to optimize the objective instead of cutting-plane.

— This variant proves theoretical guarantees that the running time to a cer-
tain solution-quality does not depend on the size of the input.

— Stochastic strategy. lterate:

x Find a random triplet of nodes:

(1) any node, (2) its neighbor, and (3) a disconnected node.
x If swapping the edge to the true neighbor (1 to 2) with an edge to the

disconnected node (1 to 3) scores higher using the current parameters,
take a small gradient step in the direction of the violation.

— Running on a Wikipedia lists, we obtain a solution in minutes of compu-

tation time on a consumer computer.

Test DDML — auc 0.691240, SVM - auc 0.610394, Euclidean — auc 0.624385
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Figure 4. ROC results using stochastic DDML.

e We plan to run stochastic DDML on massive-scale networks (e.g., the full
Wikipedia set), exploiting the independence of running time on network size,

and learn models of node distance and degree likelihood for graphs.
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