
Personalized Regularization Learning for Fairer
Matrix Factorization

Sirui Yao1 and Bert Huang2

1 Virginia Tech, Blacksburg, VA 24060, USA ysirui@vt.edu
2 Tufts University, Medford, MA 02155, USA bert@cs.tufts.edu

Abstract. Matrix factorization is a canonical method for modeling user
preferences for items. Regularization of matrix factorization models often
uses a single hyperparameter tuned globally based on metrics evaluated
on all data. However, due to the differences in the structure of per-user
data, a globally optimal value may not be locally optimal for each in-
dividual user, leading to an unfair disparity in performance. Therefore,
we propose to tune individual regularization parameters for each user.
Our approach, personalized regularization learning (PRL), solves a sec-
ondary learning problem of finding the per-user regularization parame-
ters by back-propagating through alternating least squares. Experiments
on a benchmark dataset with different user group splits show that PRL
outperforms existing methods in improving model performance for dis-
advantaged groups. We also analyze the learned parameters, finding in-
sights into the effect of regularization on subpopulations with varying
properties.

Keywords: Matrix Factorization · Fairness · Error Disparity · Person-
alized Regularization

1 Introduction

Matrix factorization is an important and widely adapted collaborative filter-
ing technique for training recommender systems to predict ratings. However,
MF has been found to be easily influenced by data biases and becomes unfair
[15,10]. For example, demographic groups for whom training data is less fre-
quently available can suffer less accurate predictions of their preferences [15].
This phenomenon is a form of error-based unfairness where users may receive
lower quality service because of a demographic attribute that ideally should not
affect their experience. To make it worse, the group of users who receive less
accurate recommendations are more likely to abandon the service, leading to an
even more biased environment and more unfair models in the future [9].

Collecting more and better quality data for the disadvantaged groups will
help a model better learn these users’ preferences. However, this approach is usu-
ally expensive or even infeasible. For example, a recommender service provider
cannot request users to change how they interact with the service. Therefore, the
more important questions is, can we handle these biases more appropriately to
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make better use of the available data, and build a model with improved accuracy
for the ill-served users?

In this work, we first consider different types of data biases, which all re-
fer to a certain form of divergence in the structure of per-user or per-group
data. We verify on synthetic datasets that these biases can lead to one subgroup
experiencing higher error than the others. We then consider the connection be-
tween prediction error and the role of regularization. If we acknowledge the
difference in per-user data, then instead of tuning a global hyperparameter, a
matrix factorization could benefit from personalized regularization, which bet-
ter accommodates each individual user. This strategy not only directly addresses
the cause of error disparity, but also provides more interpretability compared to
directly manipulate the latent features since regularization is a comparatively
well-understood concept.

Since personalized regularization drastically increases the number of hyper-
parameters, commonly used hyperparameter searching procedures—such as grid
search and random search—become prohibitively expensive. It is also challenging
to derive the parameters from heuristic because, in joint embedding models like
matrix factorization, the effect of personalized regularization parameters are not
independent of each other. Therefore, we propose a learning problem, personal-
ized regularization learning (PRL), to learn the optimal set of hyperparameters
that minimizes a secondary objective, in our case, the error of the disadvantage
groups. We consider the secondary objective as a function of the personalized
regularization parameters. To enable direct back-propagation and facilitate effi-
cient learning, we leverage the closed-form solutions of alternating least squares
(ALS) to solve MF.

The main contributions of this paper are as follows:

1. We identify the insufficiency of global regularization for matrix factorization
in dealing with complexity or sparsity imbalance across users, and conduct
validation on synthetic data with explicitly injected biases;

2. We propose personalized regularization learning (PRL), an interpretable al-
gorithm for learning personalized regularization by back-propagating through
the closed-form computation of ALS;

3. We demonstrate the effectiveness of the proposed approach with experiments
on a benchmark dataset with different user group splits, comparing against
three baseline models.

2 Related Work

In this section, we review literature related to the problem we aim to solve and
our proposed approach.

Error disparity Error disparity is a form of error-based unfairness. Yao and
Huang [15] discuss four variants of unfairness metrics computed based on the
divergence between prediction and labels. [15] propose to reduce error disparity
by adding the optimized metrics to the standard matrix factorization objective
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such that the model is incentivized to reduce disparity. Both [9] and [11] solve
the error disparity problem by minimizing the maximum subgroup error, which
is an upper bound on error disparity. In recommender systems, this phenomenon
is also related to the cold-start problem [6,5], where the cause of high error is
limited to insufficient data. Other notions of fairness such as statistical parity
[16] is also studied in recommender systems but is not the focus of this paper.

Differentiated regularization Besides separating the regularization parameter of
users and items, Beutel et al. [2] proposes to assign the advantaged and disad-
vantaged subpopulation to different sets, and regularize them differently. Chen
et al. [5] take a step further by computing a set of per-user regularization param-
eter by linear or logarithm functions of user sparsity. Our work is closely related
to [2] and [5] because we also seek to differentiate regularization but through an
optimization-based approach.

Hyperparameter search In practice, grid search is often used when the space of
hyperparameters is small. Random search [1] can be more efficient because it ran-
domly samples hyperparameter values instead of trying all combinations of the
candidate hyperparameters. Bayesian hyperparameter optimization [13] speeds
up random search by taking into consideration the past evaluations to decide
what areas of hyperparameter space to search next. For the task of optimizing
a large number of hyperparameters, [12] devise a reversible learning method to
compute hyperparameter gradients by reversing the dynamics of gradient de-
scent. Our approach also uses gradient-based hyperparameter tuning, but we
leverage the differentiability of closed-form updates in alternating least squares
for matrix factorization to directly back-propagate to the hyperparameters.

3 Problem Definition

Given a dataset D that contains ratings by M users on N items. which can
be represented as an M ×N sparse matrix R where each observed entry rui
represents the rating user u gives to item i. Suppose each user is associated with
a set of properties S, based on one or more such properties s ∈ S, we can split
users into a set of subgroups G.

A rating prediction model predicts the missing values in the sparse rating
matrix. We randomly split all observed ratings into RTrain and RTest. We train a
model on RTrain, and use root mean squared error (RMSE) to measure prediction
error on RTest as

RMSE =

√
1

|RTest|
∑

rui∈RTest

(rui − r̂ui)2) (1)

where r̂ui is the predicted value of rui. With a matrix factorization model, users
and items are projected as matrices P ∈ RM×d and Q ∈ RN×d. The uth row of
P , denoted as pu, is the latent feature of user u; the ith row of Q, denoted as qi,
is the latent feature of item i. The ratings are predicted as r̂ui = puq

ᵀ
i .



4 S. Yao and B. Huang

Problem Formulation Given a user subgroup of concern ĝ ∈ G, which has higher
prediction error and is considered to be the disadvantage population. The goal
is to find a model that reduces error for this subgroup. The error of a subgroup
ĝ ∈ G is denoted and measured as

RMSEĝ =

√√√√ 1

|RTest
ĝ |

∑
rui∈RTest

ĝ

(rui − r̂ui)2) (2)

where RTrain
ĝ and RTest

ĝ denote the training and test data of ĝ respectively.

4 Data Biases and Regularization

In this section, we discuss four types of data biases that contribute to higher pre-
diction error in disadvantaged subgroups, and empirically show the consequences
of these biases with synthetic datasets. We also discuss how these data biases
are related to regularization and imply the need for personalized regularization.

4.1 Data Biases

We first consider a group-level bias called population bias, which refers to the dis-
crepancy among the size of subgroups. The subgroups with smaller populations
are more likely to be compromised in modeling, especially when the data of these
minority groups have a very different structure from the other groups. We also
consider three individual-level biases. The first one is sparsity bias, which refers
to the difference in per-user data sparsity. A model with a particular complexity
requires a corresponding amount of data to overcome the curse of dimensionality,
which creates a disadvantage for users who are new or less active. The second
one is rank bias, it refers to the situation that some users’ preferences are more
complicated than others. Therefore, a higher-dimensional model is required to
capture their preferences. The third one is noise bias, which suggests different
levels of data quality and the situation where some users’ data is more noisy
than the others. We believe these four types of data biases lead to increased
prediction error for the subgroups that are being biased against.

4.2 Validation

We validate our heuristics on the effect of data bias on synthetic datasets where
we explicitly inject two types of data bias among users. We create the synthetic
data by first generating a twenty-dimensional user and item feature matrices
for 100 users and 600 items. Then we compute the rating matrix as their dot
product. To make the datasets more realistic, we also add Gaussian noise to
these ratings and clamp them within the range of 1.0 to 5.0.

We assign users to two subgroups A and B. To inject data biases, without
loss of generosity, we choose group B to be the disadvantaged group and the
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users from group B to be the disadvantaged users. For population bias, we lower
the population of group B to be the minority group; for rank bias, we force some
columns of the latent features of users from group A to be zero, so that group
B has higher dimension than group A; for sparsity bias, we mask more ratings
from group B than group A; for noise bias, we add a higher level of Gaussian
noise to the rating of group B. Specifically, to create the biased settings, we set
|B| = 30, |A| = 70; dA = 5, dB = 20; 5× amount of ratings are observed from
group A than group B; 2× amount of noise is added to the ratings of group B3.

We train matrix factorization models on these datasets and measureRMSEB ,
the error of group B. The results are shown in Figure 1. The blue bar represents
a bias-free dataset; the orange bars represent datasets with each individual type
of bias; the green, red, and purple bars represent datasets with 2, 3, and 4 types
of biases respectively. R, N, P, S are short for rank bias, noise bias, population
bias, and sparsity bias respectively. First, by comparing the fair setting (the blue
bar) and the settings with each individual biases (the orange bars), we observe
that, except population bias, each of the discussed biases alone directly leads to
higher RMSEB . Population bias is the exception because when the other three
biases are not present, the two subpopulations have exactly the same data struc-
ture. Second, in general, RMSEB increases as more types of biases are injected,
suggesting a compound impact of data biases. Third, the effect of these data
biases are not independent but can enhance each other. For example, we observe
a noticeable increase in RMSEB from setting “R, S, N” to “R, S, N, P” when
population bias is added, which by itself does not have the same effect.

4.3 Relation to Regularization

The data biases discussed above are directly related to data properties that, if not
carefully handled when building a model, will lead to overfitting or underfitting.
Overfitting or underfitting are two forms of mistakes that a model could make to
mishandle training data and increase error. Overfitting happens when a model
attends to too much detail and noise, and is more likely to occur when data is
insufficient due to increase variance; underfitting, on the other hand, happens
when a model oversimplifies and fail to capture the underlying structure of the
data.

An important component for balancing underfitting and overfitting in ma-
chine learning models is regularization. The strength of regularization needs to
be tuned to best fit the learning task and the data. Since we discussed that data
properties such as quality, sparsity, and complexity may not be universal across
all users, tuning a global regularization parameter λ∗, as is done in standard
matrix factorization models, becomes insufficient to accommodate the impor-
tant differences in per-user data, leading to poor model performance on certain
user subgroups.

3 Note that to avoid the effect of irrelevant factors, we normalize the ratings so that
the ratings of group A and B follow the same distribution. We also keep the overall
level of sparsity and noise unchanged by rescaling the configuration within each
subgroup.
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Fig. 1: The measured RMSEB of models trained on synthetic datasets with
different data biases injected. Here we use R, N, P, S to indicate rank bias, noise
bias, population bias, and sparsity bias respectively. The models are grouped
based on the number of injected data biases and are presented in different colors.

5 Personalized Regularization Learning

We have discussed that a globally tuned regularization parameter λ∗ neglects
the differences in per-user data. Therefore, we believe a model could benefit
from a set of personalized regularization parameters. With this expanded set of
hyperparameters, the objective function of training a matrix factorization model
is modified by replacing the globally tuned regularization hyperparameter λ∗

with user-personalized regularization parameters Λ = {λu}Mu=1. The user and
item latent features are learned as

P ∗, Q∗ = min
P,Q

∑
rui∈RTrain

(rui − PuQᵀ
i )2 +

1

2

(
M∑
u=1

λu(PuP
ᵀ
u ) +

N∑
i=1

λ∗(QiQ
ᵀ
i )

)
(3)

Since personalized regularization grows the space of hyperparameters from
R to RM , traditional tuning procedures such as grid search become insufficient
in such a high-dimensional space. Also, in joint embedding models like matrix
factorization, the personalized regularization parameters are not independent of
each other, therefore, it is challenging to derive the parameters from heuristics.

5.1 Personalized Regularization Learning

To efficiently search for the optimal personalized hyperparameters, we propose
personalized regularization learning (PRL), which poses the hyperparameter
search problem as a secondary learning task. We denote the primary learning
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problem in Equation (3) as L, which returns the learned P , Q for a given hy-
perparameter set Λ

P,Q = L(Λ) (4)

We then make predictions using the learned latent features P and Q through a
predictor function H,

R̂ = H(P,Q) (5)

and evaluate a secondary objective, which in our running example, is the sub-
group error RMSEĝ through function E,

RMSEĝ = E(R̂) (6)

Combining equation Equations (4) to (6), we get RMSEĝ = E(H(L(Λ))) =
F (Λ) where F = E(H(L)). The secondary learning problem is formulated as

Λ∗ = min
Λ∈RM

F (Λ) (7)

F is a differentiable function if E, H, and L are all differentiable. Then we
can directly backpropagate through F to compute gradients of the secondary
objective with respect to Λ.

5.2 Leveraging ALS

Solving the factorization problem L involves minimizing a non-convex regular-
ized squared reconstruction error. One approach for optimizing this objective is
through gradient descent [3], which has been made especially convenient with
the advance of automatic differentiation tools [4]. However, the gradient of hy-
perparameters are usually unavailable [12]. Therefore, we instead use alternating
least squares (ALS) [14] to solve L, which alternates between optimizing P and
Q by iteratively applying a closed-form solution

Pu ←
( ∑
i:(u,i)∈D

q̃iq̃i
T + λ∗Id

)−1 ∑
i:(u,i)∈D

ruiq̃i

Qi ←
( ∑
u:(u,i)∈D

p̃up̃u
T + λ∗Id

)−1 ∑
u:(u,i)∈D

(rui − bu)p̃u

(8)

The closed-form updates are differentiable, so we can conveniently back-propagate
through F to compute gradients of the secondary objective with respect to Λ and
learn Λ with a standard gradient-based optimizer. Since the time complexity of
computing partial derivative is the same as forward passing [7], the time it takes
to back-propagate to Λ is the same as forward ALS, thus the time complexity
of PRL is O(T ), where T is the number of epochs ALS takes to converge. This
is on par with the state-of-the-art hyperparameter optimization techniques [12].
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5.3 Data Split

During learning, we must use different datasets for training the MF model and
measuring subpopulation error. This is because our goal is to decrease gener-
alization error, which needs to be evaluated on data unseen by the training
algorithm. If we measure subpopulation error on the same data that the MF
model is trained on, we may simply incentivize the learning optimization to
overfit the data as much as possible.

Therefore, after we split dataR intoRTrain andRTest, we further splitRTrain

into RTrain−Primary and RTrain−Secondary. In each PRL iteration, we train a ma-
trix factorization model onRTrain−Primary and computeRMSEĝ onRTrain−Secondary,
which is used to update Λ. After we obtained Λ∗, we apply it to train a final ma-
trix factorization model on the full training setRTrain. We then evaluate RMSEĝ
on RTest. The full algorithm is listed as Algorithm 1. In practice, we recommend
creating multiple primary-secondary splits of RTrain so that the learned Λ∗ is
not overfitted to one particular split.

Algorithm 1: Personalized Regularization Learning

Given dataset R, global optimal lambda λ∗, MF model L, error metric E,
disadvantaged subpopulation ĝ. Split R into RTrain and RTest, further split
RTrain into RTrain−Primary and RTrain−Secondary.

Initialize Λ← {λi = λ∗}Ni=1, randomly initialize P and Q
while not converged do

P ∗, Q∗
RTrain−Primary

←−−−−−−−−−− L(Λ)

R̂
RTrain−Secondary

←−−−−−−−−−−− H(P ∗, Q∗)

RMSEĝ
RTrain−Secondary

←−−−−−−−−−−− E(R̂ĝ)
compute gradient ∇ΛRMSEĝ through backpropagation
update Λ with ∇ΛRMSEĝ

end
Re-initialize P and Q

P ∗, Q∗
RTrain

←−−−− L(Λ∗)

5.4 Interpretability

A key advantage of PRL is that it provides interpretable feedback in the magni-
tude of the learned per-user regularization parameters. Compared to regularization-
based methods that directly manipulate user and item latent representations,
PRL’s learned parameters indicate the level of regularization, which is compar-
atively well-understood and can help us understand how the model is improved.
We can interpret them by comparing their values against the globally tuned
value. If a user’s parameter increases, it suggests that this user would have been
overfitted. Conversely, if a user receives lower regularization from PRL, they
were prone to underfit and needed a more complex model.
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6 Experiments

6.1 Datasets

The choice of public real datasets that provide user demographic information is
very limited. We use the benchmark MovieLens 100k dataset [8], which contains
100,000 ratings from 1,000 users on 1,700 movies, and conveniently provides
multiple user demographic features. Specifically, we consider demographic infor-
mation such as gender, age, zip code; we also consider user degree–the number
of ratings each user has, and user error–the error of each user with a vanilla
matrix factorization model. For gender, we split users by category and create
two subgroups (female and male users); for zipcode, we split by the first digit
of zip code and create 10 subgroups, representing users from different regions in
the US; for age, degree, and error, we split by percentile and each split creates
10 equal size subgroups.

We randomly sample 10% of data as holdout set for testing and use the rest
as training set. Then we do 10-fold cross-validation on the training set to select
the best global regularization weight λ and the rank d. The optimal combination
we found is d∗ = 30 and λ∗ = 20.0. We train a standard matrix factorization
model and measure the subgroup errors under all user splits. For each split, we
pick the subgroup with the highest error as the disadvantaged group, denoted
as ĝ and seek to reduce RMSEĝ. The disadvantaged subgroups are listed in the
second row of Table 1.

6.2 Baselines

Focused learning (FL) FL [2] assigns users to only two subgroups, a focused set,
and an unfocused set. The two sets of users are regularized differently to optimize
the model performance on the focused set of users. The optimal hyperparameter
pair is searched via grid search.

Differentiated regularization (DR) DR [5] is motivated to alleviate the cold-start
problem and regularize every user differently. The regularization parameters are
computed from three functions (one linear and two logarithmic) of user degree.
We denote the three formulas as DR-linear, DR-Log-1, and DR-Log-2.

Unfairness-regularized matrix factorization (URMF) URMF [15] is designed to
optimize a secondary fairness in matrix factorization models. The strategy is
to add the optimized secondary objective as a penalty term to the standard
matrix factorization objective, weighted by a weight parameter. URMF directly
manipulates the fitted latent embeddings instead of through regularization.

6.3 Specifications and Results

For DR, we directly apply the three formula (Equation 5 in [5]) to compute
personalized regularization parameters. For FL, we follow the same procedure



10 S. Yao and B. Huang

as proposed by the authors and try a range of regularization values on the
focused and unfocused set, {0.001, 0.01, 0.1, 1, 1, 10, 20, 30, 50, 100}, which gives
100 combinations. For URMF, we try 10 different unfairness pernalty weights
{1e − 6, 1e − 5, 1e − 4, 1e − 3, 1e − 2, 1e − 1, 1, 5, 10, 20}. For FL and UR, we
identify the optimal setting or weight via cross-validation, then apply the same
setting or weight to train a final model on the full training set. For all trained
models, we measure RMSEĝ on the holdout test set.

We show the results of all compared models on different user splits in Ta-
ble 1. We first compare the performance of PRL against the standard matrix
factorization model. We observed that PRL successfully reduces RMSEĝ on all
user splits, and achieves more than 10% improvement on subgroups split by Zip
Code and Error. We also observe that PRL outperforms all baseline models by
a convincing margin. Focused learning is the second-best method, this further
suggests that fitting different regularization is effective in optimizing subpopula-
tion error. We believe PRL wins over Focused learning due to the expanded set
of hyperparameters and smart search through optimization. We observe a big
fluctuation in the performance of URMF, it is possibly because URMF still can
easily overfit to the training data since it measures both primary and secondary
objectives on the same data. Lastly, DR performs the worst. It rarely reduces
RMSEĝ and even when it does, the improvements are trivial. This pattern aligns
with the results and conclusion in the original paper that DR sometimes makes
things worse and especially so on the MovieLens dataset. The poor performance
of DR suggests it is challenging to find a one-fits-all heuristic for setting the
personalized regularizations.

Table 1: Comparison of all model performance in reducing RMSEĝ. The rows
are the RMSEĝ of a standard matrix factorization model and all compared
models, the lower the better. The columns are different user group splits. Bold
values are the most significant improvement in each column.
User Split Gender Age Zip Code Degree Error

ĝ F 52-59 0 0%-10% 90%-100%

MF 1.029 1.045 1.062 1.118 1.612

PRL 0.967(-6.0%) 0.983(-5.9%) 0.952(-10.4%) 1.043(-6.7%) 1.367(-15.2%)

FL 0.998(-3.0%) 1.001(-4.2%) 0.989(-6.9%) 1.094(-2.1%) 1.479(-8.2%)

URMF 1.013(-1.6%) 1.089(+4.2%) 0.956(-10.0%) 1.102(-1.4%) 1.579(-2.0%)

DR-Linear 1.041(+1.2%) 1.127(+7.8%) 1.047(-1.4%) 1.114(-0.4%) 1.601(-0.7%)

DR-Log-1 1.067(+3.7%) 1.113(+6.5%) 1.082(+1.9%) 1.109(-0.8%) 1.641(+1.7%)

DR-Log-2 1.059(+2.9%) 1.114(+6.6%) 1.098(+3.9%) 1.112(-0.5%) 1.632(+1.2%)

We next examine the personalized regularization parameter fitted through
PRL to understand how it reduces RMSEĝ. We compute the mean and standard
deviation of the regularization parameters in each subgroup throughout PRL op-
timization. We show the plot in gender subgroups as an example in Figure 2.
In this case, female users is the disadvantaged subgroup. We observe that fe-
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male users, on average, have been assigned lower regularization, and male users’
regularization has been increased. This provides an interesting insight that the
complexity of the originally tuned global model was lower than what is need for
the disadvantaged group. PRL allows these users to enjoy a more complex model
that better captures their preferences. We also noticed an increased variance in
the regularization parameter, and surprisingly even more so in the advantaged
group. As we discussed in Section 5, the personalized regularization parameters
are not independent of each other in joint embedding models, therefore, the reg-
ularization of all users are shifted even though the objective is to only optimize
the prediction error of the disadvantaged group. Further, we found the same di-
rection of change in the pair of regularization parameters identified via focused
learning (λF = 10 and λM = 30). This suggests an alignment between the two
methods in reducing high subpopulation error through adjusted regularization.
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Fig. 2: The curve of mean and standard deviation of personalized regularization
values during PRL. F means female users and M means male users.

7 Discussion

In this work, we address the problem of error disparity in matrix factorization
models. We discuss four types of biases that contribute to higher subpopula-
tion error and validate their effect on synthetic datasets. We presented person-
alized regularization learning (PRL), a method that learns to regularize users
differently to improve prediction performance for disadvantaged subgroups of
users. PRL solves a secondary learning problem to minimize validation unfair-
ness by back-propagating through alternating least squares. In experiments, PRL
outperforms existing methods for reducing error disparity in recommendations.
Moreover, the learned per-user regularization parameters are interpretable and
provide insight into how fairness is improved. For future work, we are interested
in investigating the effectiveness of PRL in other variants of matrix factorization,
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such as SVD++, factorization machine. We are also interested in further explor-
ing the learned regularization parameters to uncover richer group structures.
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