
Discovering Characterization Rules from Rankings

Ansaf Salleb-Aouissi
CCLS

Columbia University
New York, NY 10115

ansaf@ccls.columbia.edu

Bert Huang
Computer Science Department

Columbia University
New York, NY 10027
bert@cs.columbia.edu

David Waltz
CCLS

Columbia University
New York, NY 10115

waltz@ccls.columbia.edu

Abstract

For many ranking applications we would like to under-
stand not only which items are top-ranked, but also why
they are top-ranked. However, many of the best ranking
algorithms (e.g., SVMs) are black boxes that give little in-
formation about the factors for their rankings. We describe
and demonstrate a new approach that can work in conjunc-
tion with any ranking algorithm to discover explanations
for the items at the top of the rankings. These explanations
are in the form of rules expressed as boolean combinations
of attribute-value expressions. These rules are discovered
by contrasting attributes of items drawn from both the top
and bottom of a ranking list, looking for items that have
high leverage, corresponding to rules with broad coverage
and sharp differentiations. We include empirical results to
demonstrate the utility of our method.

1. Introduction

Ranking problems arise in a wide range of real world
applications where an ordering on a set of examples is
preferred to a classification model. These applications in-
clude collaborative filtering, information retrieval and rec-
ommender systems. In most of these applications, the user
typically focuses and acts only on the top part of the rank-
ing list. For example, when a browser returns thousands of
relevant pages to a query, usually only the first few results
are exploited by the user. In some other applications, for
instance, ranking components of a system by susceptibility
to failure, the user is generally interested in acting only on
the top n-percent of components and has no interest in the
ordering of the other components.

One of the main limitations of ranking models is the lack
of intelligibility of the results. Typically no insights on the
factors of a ranking or explanations are given to the user –
the results produced must be taken on faith. Our work was
initially motivated by a real application related to ranking

power grid electrical components according to their likeli-
hood to failures. From our practical experience, decision-
makers are understandably more confident acting on high-
ranked items if they can be given factors for the rankings
than if they are simply given an ordered list of examples.

We address here the problem of interpretability of a rank-
ing list of examples by learning symbolic interpretations
with emphasis on the top portion of the ranking. Our goal
is not at all to uncover the ranking function used by a black-
box ranking method but to analyze the top portion of the
ranking list. To the best of our knowledge no work has been
done yet on getting explanations from rankings. The gen-
eral schema of our methodology is as follows:
• Rank examples using any supervised ranking system.
• Create two subsets of the ranking data, consisting of

the top n and bottom m items of the ranking. Typically
n = m, and ||n + m|| = 5− 20% of the total data.

• Extract the important characteristic properties by ana-
lyzing attribute patterns in the top and bottom subsets.

We have developed YRank, an algorithm designed to learn
interpretable characterization rules of the top of a ranking
list. Note that the bottom portion of the ranking list is used
to select the most powerful rules that describe top exam-
ples, and sharpen these rules. Interestingness is assessed
in our framework with the leverage measure that combines
high coverage and characterization power. We have ap-
plied our algorithm to several datasets. Our empirical re-
sults show the utility of our methodology with regard to the
interpretability of a ranking list of examples. The contribu-
tions of the paper are as follow:

1. We argue and show that learning characterization rules
is an effective approach to understanding the combina-
tions of attributes and values that characterize the top
portion of a ranking list and differentiate it from the
bottom of the ranking list.

2. We present an effective method for computing char-
acterization rules that use only the top and bottom of

rankings and demonstrate its effectiveness on several
datasets.

The paper is organized as follows: In Section 2, we give
the related work of ranking models and interpretable mod-
els. Our framework is described in Section 3. Section 4 is
devoted to the experiments. We conclude in Section 5.

2. Related Work

2.1 Ranking models

There has been an increasing interest in learning rank-
ing models [1]. Freund et al. [8] proposed RankBoost, a
boosting algorithm that combines many “weak” rankings
into a single accurate ranking. SVM-Rank was proposed
by Joachims [14] and applied to improve information re-
trieval problems by using click-through data as feedback
from users in search engines. Long and Servedio devel-
oped a boosting method [16] named Martingale boosting
for ranking. In addition to pure ranking methods that learn
ranking functions, some classification functions that output
scores have also shown excellent performances in ranking
[24]. For instance, it turned out that SVM classifiers are
good rankers as well [12]. Typically, the SVM produces
a classifier that labels examples, then thresholds the out-
puts. Instead, one can rank the examples by how strongly
the classifier predicts the class of each example.

2.2 Interpretable models

Interpretability of Machine Learning and Data Mining
models has been recognized as one of the main challenges
in the field [13]. In many practical applications, classifica-
tion accuracy is no longer the only goal; interpretability is
critical as well. Quite a lot of recent work has addressed
the problem of extracting explanations from classifiers. For
instance, there are many approaches for extracting explana-
tions from SVM (e.g., [4, 9]). Most of these works use the
SVM’s “support vectors” to produce rules.
The machine learning and data mining literature is rich
with numerous approaches for learning interpretable mod-
els spanning descriptive generalization [19], decision trees
[21], association rules [2, 22], subgroup discovery [15], and
characteristic patterns [23]. These methods share the goal
of extracting intelligible patterns, rules and models from the
data set. One can distinguish our goal of explanatory learn-
ing from discriminative learning, such as in decision trees
[11]. For decision trees, discriminative rules are formed via
paths from the root to the leaves, which contain the class.
That is, they discriminate between the classes present in
the learning set. Although such rules are interpretable, a
large amount of data is needed to get a stable decision tree,

whereas we argue that a better characterization can be ob-
tained using only the top of the ranking list.

2.3 Why explanatory rules provide interpretabil-
ity

The explanatory descriptions we are using are in gen-
eral maximal conjunctions of attribute-relation-value ex-
pressions, whereas discrimination rules are usually minimal
descriptions [19]. For example (taken from [7]), suppose
that we want to learn the decision mechanism of a “banks
coin-sorting machine” for a given number of different coins
(positive examples). It is most important to train the system
to recognize every single coin the machine is supposed to
accept (i.e., to characterize), and not so critical to discrim-
inate these coins from all of the infinite different kinds of
coins that should be rejected. However, if available, one
can use other coins (e.g., some faked and foreign coins) as
negative examples, to keep only the most characteristic de-
scriptions, i.e., to eliminate items that are common to both
the bottom and top of a ranking, and thus true but unin-
formative. We believe and show in Section 4.2 that long
descriptions constituted by strong properties discovered by
a characterization approach are more likely to be useful and
actionable. That is, if we would like to act on the top ranked
elements, we would like to know as many details as possible
about those elements.

3. From a ranking list to interpretability

Our approach is a two-step process. The first step con-
sists of ranking the examples using any Machine Learning
ranker. The second step concerns the extraction of explana-
tions from a ranked list of objects.

3.1 Ranking framework

We address the problem of supervised ranking of data.
The term ranking refers to the process of taking a collection
of data and ordering it in a meaningful and useful order.
Supervised ranking outputs such an ordered set using the
features and guided by the label assigned to each object.

More formally, we would like to order a set of exam-
ples (x1, y1), . . . , (xn, yn) where x1, . . . , xn are vectors of
features describing a set of examples, and each example is
given a label yi ∈ {+1,−1}. We will denote by X+ and
X− the set of positive and negative examples respectively.
Ideally, we want to learn a scoring hypothesis h that would
allow us to rank all the positive examples above all the neg-
ative ones. That is, ∀xi ∈ X+, ∀xj ∈ X−, h(xi) > h(xj).

We use receiver order characteristic (ROC) curves [5] to
analyze the ranking results, since they provide a good way
of measuring the quality of a ranking. when the only ground

truth we have is whether or not each data point belongs on
the top of the ranking (labeled +1) or on the bottom (labeled
−1). ROC is essentially normalized by the class cardinality.

Rank Serial# Age Size Manufacturer

To
p

1 15B25 2 500 B
2 13B28 8 500 B
3 58C25 12 1000 C
4 88A25 1 500 A
5 18B22 17 500 B

...

B
ot

to
m

96 63A11 27 500 A
97 12A25 2 2000 A
98 15A54 8 2000 A
99 55A95 12 2000 A
100 41B77 25 2500 B

Table 1. A toy example of a ranking of compo-
nents of an electrical system.

Example. Consider a list of 100 electric components (Table
1). Each component is described by its serial number, age,
size and manufacturer, and is labeled according to its failure
status (label=1 for failed, -1 otherwise). A ranking allows
us to order the components according to susceptibility of
failure. The top of the ranking would have the components
that are the most susceptible to failure while components at
the bottom of the ranking are less prone to failure. Thus, the
domain expert can focus on the n top components and act
on them, e.g., by scheduling inspections/replacements 1.

3.2 Interpretable explanations

Given a “good ranking” list produced by the previous
step, getting interpretable explanations consists of charac-
terizing the top (highly ranked) examples in the ranking list.
The bottom examples of the ranking list are used for con-
trast, to make sure that we identify and retain the most char-
acteristic rules of the top examples. By doing so, we group
the examples into three sets, where the most “pure” exam-
ples, i.e., the “very positive” and “very negative” examples
are on the top and bottom of the ranked list respectively.
We focus on the top and the bottom of a ranking rather than
simply contrasting the positive to the negative class because
we are only interested in the top part of the ranking list; this
is generally the actionable information for the user. Also, in
practice, some examples are considered negative examples
while they are actually unknown. This occurs in many real-
life applications. In the previous example, we are not sure
whether the negative examples are truly negative; Although
these components are considered as negative examples be-
cause they have not failed yet, they could fail soon. The

1Our actual rankings are based on 100-300 attributes for each compo-
nent.

ranking function would not rank these examples deep in the
top or bottom classes but rather in the middle. The approach
we suggest here would discard such uncertain examples and
focus only on the most certain and thus valuable ones. Once
we focus on the ranking extremities, we look for the set of
interesting rules, characterizing the top of the list, of the
form:

R : Concept → Property,
where Property is an attribute-value pair and Concept is

either the concept “in the top” or “in the bottom”2. A rule is
interesting if it has enough coverage; that is the proportion
of example having this property in the top ranked part of the
ranking high enough w.r.t. a minimum coverage threshold.
More formally, the coverage is defined by:

Coverage(R) =
|{x ∈ Concept ∧ Vp(x) = true}|

|x ∈ Concept| .

Where p is the property and the notation Vp(x) is a Boolean
function such that for an example x, we have Vp(x) = true
or false which means that the property p may be satisfied by
x or not.

We also assess the importance of properties by using
other statistical measures such as the leverage measure [20].
The reason we chose this statistical measure3 is that it com-
bines high characteristic power with the capture of the most
highly associated properties (high coverage). The leverage
has been used in other learning tasks and is called also nov-
elty (e.g., [23] in learning characteristic rules). The leverage
of the rule above is given by (P stands for probability):

Leverage(R) = P (Property ∧ Concept)−
P (Property)× P (Concept).

The leverage measure evaluates the proportion of additional
examples covered by both the left-hand side and right-hand
side of the rule above those expected if both sides of the
rule were independent of each other. Obviously, we have:
−0.25 ≤ Leverage(R) ≤ +0.25.
A property is interesting for a given concept if it has a
strongly positive or negative leverage. A strongly positive
value indicates a strong association between the property
and the concept, while a strongly negative value indicates a
strong association between the property and the negation of
the concept. We estimate the leverage of a rule by:

|{x ∈ Concept ∧ Vp(x) = true}|
|T ∪B| −

|{x ∈ (T ∪B) ∧ Vp(x) = true}|
|T ∪B| × |x ∈ Concept|

|T ∪B| ,

where Concept is either T (top set) or B (bottom set).
2Note that rules involving the concept “in the bottom” are by-products

in our approach as we aim at characterizing the top of the ranking..
3One can use other evaluation measures such as entropy, purity, or

Laplace estimate [10] to assess the interestingness of rules.

Property Coverage top Leverage top Coverage bottom Leverage bottom

To
p

Manufacturer=B 0.6 0.1 0.2 -0.1
Size=[500,1000) 0.8 0.15 0.2 -0.15
Manufacturer=B AND Size=[500,1000) 0.6 0.15 0 -0.15
Age=(-inf,3) AND Size=[500,1000) 0.4 0.10 0 -0.10

B
ot

to
m

Size=[2000,2500) 0 -0.15 0.6 0.15
Manufacturer=A 0.2 -0.15 0.8 0.15
Age=[25,+inf) 0 -0.10 0.4 0.10
Manufacturer=A AND Size=[2000,2500) 0 -0.15 3 0.15

Table 2. Set of properties extracted for the toy example. Manufacturer A seems to make rather good
large-size components, while manufacturer B makes bad small components.

Example. Consider the ranked list of electric components
illustrated in Table 1. The main extracted patterns shown in
Table 2 help to identify which properties are responsible for
failures. It can be extremely important to find patterns in the
attributes of highly ranked items, for instance to realize that
particular components built during some range of dates by
a particular manufacturer are disproportionately responsible
for failures. The ultimate goal is to help the domain expert
set policies for purchasing the most reliable components,
schedule inspections, etc.

Algorithm 1: YRank pseudo-code
Input:
- a ranking list of examples L, a coverage threshold MinCov, a
leverage threshold MinLev, Top and Bottom percentages
Output:
- 2 sets of properties PT and PB , a set of histograms H
T ← {examples in top of L}1
B ← {examples in bottom of L}2
H←∅ , PT ← ∅, PB ← ∅, C1 ← ∅, P ← ∅, i = 13
foreach attribute do4

foreach value do5
p ← (attribute = value)6
C1 ← C1 ∪ {p}7

h = Histogram(attribute)8
H = H ∪ h9

while Ci $= ∅ do10
P ← P ∪ {p ∈ Ci / coverage(p) ≥ MinCov}11
Ci+1 = generate properties(Ci)12
i = i + 113

PT ← PT ∪ {p ∈ P/Leverage(Top → p) ≥ MinLev}14
PB ← PB ∪ {p ∈ P/Leverage(Bottom → p ≥ MinLev}15
return PT , PB , H16

The pseudo-code of YRank is given in Algorithm 1. The
aim of YRank is to uncover the set of the most important
rules that lead a supervised ranking algorithm to rank some
examples above some others. The algorithm explores the
search space of possible properties by contrasting top and
bottom parts of the ranking. The terms PT and PB are
used to denote the set of properties (right-hand sides of the
rules) for top and bottom respectively. For a better visual-
ization of the coverage of the properties in top and bottom,

our code outputs also a histogram for each attribute giving
the relative frequency of its various values. This allows us
to visualize the most contrasting single properties. We use a
variant of the classical level-wise framework [18] for learn-
ing all interesting properties efficiently by using the anti-
monotonicity property of the coverage measure. That is, if
a property does not have a sufficient coverage, no conjunc-
tion of properties including that property will have enough
coverage w.r.t. the minimum coverage threshold, since cov-
erage only decreases when adding conditions. YRank starts
with single properties that have sufficient coverage. The
function generate properties constructs properties of of size
k + 1 by joining properties of size k that have k − 1 prop-
erties in common [2]. This ensures that we will get con-
junctions of properties of size exactly k +1. At each round,
only the properties having enough coverage are kept in the
set of properties P . We try several values of top and bottom
percentages in order to select the best sizes for top and bot-
tom, the sizes that lead to the highest number of interesting
properties and the highest leverages.

4. Experiments

We implemented YRank4 in Python and conducted an
experimental evaluation of our algorithm on several bench-
marks. We have used first SVMLight5 to train Support Vec-
tor Machines on the datasets in order to get the ranking lists.

4.1 A synthetic dataset

To verify whether YRank is catching the right attributes,
we randomly generated a synthetic dataset of 1000 ex-
amples each described by 50 features such that X ∈
{−1, 1}50. Class labels were assigned as follows:

Y = sign(
∑k=11

k=1 Xk)
YRank succeeded in finding those attributes with a mini-
mum Leverage of 0.08 by focusing only on the top 5% and

4Code & datasets available at http://www1.ccls.columbia.
edu/˜ansaf/

5http://svmlight.joachims.org/

bottom 5% of the ranking list. It was not possible to un-
cover this set of properties by using the full dataset (where
top (resp. bottom) represents all positive (resp. negative)
examples) with the same parameters until we decreased the
Leverage to a very low value. This means that we have more
characteristic power in the top and bottom of the ranking list
than in the full dataset. See discussion in Section 4.3.

4.2 Atherosclerosis dataset

Figure 1. Atherosclerosis ROC Curve. The X-
axis represents the ranking in proportions.

In this section, we describe the experiments we con-
ducted on a medical dataset6 in the context of the Stulong
project. The dataset concerns a twenty year study of the risk
factors for atherosclerosis in a population of 1,419 middle
aged men. We use a compiled dataset [17] with the goal of
identifying the main factors for this disease. The attributes
used in the dataset are given in Table 5 in the Appendix.
The ranking target attribute used is “death”. Figure 1 shows
the ROC curve for the learning results with top 10% and
bottom 10% emphasized and where top gathers the sickest
patients and bottom the healthiest patients. We have used
YRank with different values of top and bottom and kept the
pair (top=5% and bottom=5%) giving the highest number of
good properties. The results are reported in Table 4 and the
associated histograms are in the Appendix Figure 3.

Stulong data has already been used in a discovery chal-
lenge and has been the subject to many publications [17].
Atherosclerosis factors are known to be mainly tobacco
consumption and duration, overweight, and low physical
activity while there is no evidence on the impact of alcohol

6http://euromise.vse.cz/STULONG

consumption. All these factors have been uncovered by our
approach as shown in Table 3, and in the Appendix Figure
3. We show that there are many strong properties charac-
terizing the top 5% of the ranking list discovered by Yrank.
For example property 1, RSK TOBA=1, is a perfect prop-
erty since it covers all the patients at the top of the rank-
ing list. Other interesting properties include for instance,
Toba duration=20, education =0 and TOBA CONSO=1.25.

To compare to other symbolic learning methods, we used
other classifiers that output interpretable classification rules
such as the Ripper classification rule induction algorithm
[6] and C4.5 decision trees [21]. The goal was to classify
the top and the bottom patients, each of which constituted
of 70 patients. The results are very short classification rules
based on property 1 that Yrank discovered. No more details
are given about the population of patients at the top of the
ranking. The output results are as follows:
• Ripper rule learner:

RSK TOBA >= 1 → Concept=Top (70/0)
where (70/0) expresses (#patients Top/#patients Bottom)
• C4.5 Decision tree:

RSK TOBA <= 0: Bottom (70)
RSK TOBA > 0: Top (70)

where (70) expresses the number of patients in Bottom/Top.
Obviously, RISK TOBA is the most discriminative prop-
erty that both classifiers chose and there was no need for
the classifiers to use any other property to discriminate the
top and the Bottom. However, this property is not action-
able and thus does not help the domain-expert while other
strong properties discovered by our characterization method
are quite interpretable and actionable. That is, if we want to
act on the top ranked patients, we would like to know as
many details as possible about those patients.

4.3 More experiments

Size prop = 1 Size prop = 2

top+bottom Full dataset top+bottom Full dataset
Atheroscl. 20 2 463 63
Australian 15 7 135 71
Heart 21 11 186 78
Synthetic 26 2 975 180

Table 4. Number of rules discovered from full
datasets vs. Top 5% and Bottom 5%.

We compared the number of interesting properties w.r.t.
the leverage measure when we use the top and the bottom
examples, versus when we use the full dataset. Table 4
compares the number of interesting properties for these 2
cases on 4 datasets: the atherosclerosis dataset, the syn-
thetic dataset and 2 other datasets from the UCI repository

Number Property Freq_top Cov_top Lev_top Freq_bottom Cov_bottom Lev_bottom

1 RSK_TOBA=1 70 1.00 0.25 0 0.00 -0.25

2 TOBA_DURA=20 67 0.96 0.24 1 0.01 -0.24

3 EDUCATION=0 60 0.86 0.21 2 0.03 -0.21

4 ICT =0 AND EDUCATION=0 60 0.86 0.21 2 0.03 -0.21

5 TOBA_DURA=20 AND EDUCATION=0 57 0.81 0.2 0 0.00 -0.2

6 TOBA_DURA=20 AND RSK_TOBA=1 AND EDUCATION=0 57 0.81 0.2 0 0.00 -0.2

7 BIRTH_YEAR=[25,30) 52 0.74 0.18 2 0.03 -0.18

8 RSK_HYPE=1 50 0.71 0.18 1 0.01 -0.17

9 TOBA_CONSO=1.25 37 0.53 0.12 2 0.03 -0.12

10 TOBA_CONSO=0.85 33 0.47 0.1 5 0.07 -0.1

11 HT=0 70 1.00 0.1 41 0.59 -0.1

12 ACTIV_JOB=3 29 0.41 0.09 4 0.06 -0.09

13 RSK_OBES=1 28 0.40 0.09 4 0.06 -0.09

14 TIME_JOB=6 24 0.34 0.06 7 0.10 -0.06

15 MARIT_STAT=0 21 0.30 0.06 3 0.04 -0.06

16 SYST=[160,180) 18 0.26 0.06 0 0.00 -0.06

17 RSK_FAMI=1 19 0.27 0.06 3 0.04 -0.06

18 DIAST=[100,120) 14 0.20 0.05 0 0.00 -0.05

19 ALCO_CONS=[1.10,1.20) 23 0.33 -0.05 37 0.53 0.05

20 SYST=[120,140) 12 0.17 -0.05 26 0.37 0.05

21 MARIT_STAT=1 49 0.70 -0.06 67 0.96 0.06

22 SYST=[100,120) 2 0.03 -0.06 18 0.26 0.06

23 RSK_FAMI=0 50 0.71 -0.06 67 0.96 0.06

24 TOBA_CONSO=0.5 0 0.00 -0.07 20 0.29 0.07

25 TIME_JOB=5 36 0.51 -0.08 58 0.83 0.08

26 RSK_OBES=0 41 0.59 -0.09 66 0.94 0.09

27 HT=1 0 0.00 -0.1 29 0.41 0.1

28 ACTIV_JOB=1 16 0.23 -0.12 50 0.71 0.12

29 TOBA_CONSO=0 0 0.00 -0.13 36 0.51 0.13

30 BIRTH_YEAR=[35,40) 4 0.06 -0.17 51 0.73 0.17

31 RSK_HYPE=0 15 0.21 -0.19 69 0.99 0.19

32 EDUCATION=1 10 0.14 -0.21 68 0.97 0.21

33 !"#$%&'%"%()*"+,*#'-&./01(2*"+,*#'-&341'(2 3 0.04 -0.21 62 0.89 0.21

34 !"#$%&'%"%()*"+,*#'-&./01(2* 5 0.07 -0.22 66 0.94 0.22

35 RSK_TOBA=0 0 0.00 -0.25 70 1.00 0.25

T
O

P
B
O

T
T
O

M

Table 3. List of some of the properties discovered in atherosclerosis dataset as generated by YRank.

[3]. For this experiment, we have used MinLeverage=0.08,
top=bottom=5% and a size of properties Size prop ≤ 2.
The results show that we get more interesting properties
with a high leverage when we consider the top and bottom
of the ranking list than when we use the full dataset.
We conducted other experiments with different top and bot-

Figure 2. # of rules versus (top+bottom)%.

tom values. They have shown that as we increase ||T +B||,

we get less interesting properties (Figure 2). We do lose
characteristic power when we include data that is less pure
than the top and bottom.

We also work with other proprietary data in smart grid
applications, for which this framework has been initially
derived. The goal is to rank over 30,000 electric compo-
nents (transformers) according to their susceptibility to fail-
ure. Our actual rankings are based on 100-300 attributes for
each component. The intelligible rules we have extracted
have proven useful for directing the actions of domain ex-
perts, and importantly have helped give the domain experts
confidence in the correctness of the ranking results.

5. Conclusion and Future Work

This paper describes a simple yet powerful approach to
make supervised ranking interpretable, specifically the top
portion of a ranking. The underlying idea is to focus on
the top and bottom portions of the ranking to uncover the
main characteristic properties of the highly ranked exam-
ples. This can be useful for the practitioner to direct actions
on the top-ranked items and understand the model. Our al-
gorithm needs a ranked list of objects as input, and is inde-
pendent of the learning methodology was used to rank the
objects. In future work, we would like to integrate the abil-
ity to interpret properties into the ranking algorithm itself.

Acknowledgments

Thanks to Sergey Sigelman for YRank implementation.
This work has been partly supported by a research contract
from Consolidated Edison New York.

References

[1] S. Agarwal, C. Cortes, and R. Herbrich, editors. Pro-
ceeding of the NIPS 2005 Workshop on Learning to
Rank, December 2005.

[2] R. Agrawal and R. Srikant. Fast algorithms for min-
ing association rules in large databases. In VLDB ’94:
Proceedings of the 20th International Conference on
Very Large Data Bases, pages 487–499, San Fran-
cisco, CA, USA, 1994.

[3] A. Asuncion and D. Newman. UCI machine learning
repository, 2007.

[4] N. Barakat and A. P. Bradley. Rule extraction from
support vector machines: Measuring the explanation
capability using the area under the roc curve. In ICPR
(2), pages 812–815, 2006.

[5] A. P. Bradley. The use of the area under the ROC curve
in the evaluation of machine learning algorithms. Pat-
tern Recognition, 30(7):1145–1159, July 1997.

[6] W. W. Cohen. Fast effective rule induction. In In Pro-
ceedings of the Twelfth International Conference on
Machine Learning, pages 115–123, 1995.

[7] P. Davidsson. Integrating models of discrimination
and characterization for learning from examples in
open domains. In IJCAI (2), pages 840–845, 1997.

[8] Y. Freund, R. D. Iyer, R. E. Schapire, and Y. Singer.
An efficient boosting algorithm for combining prefer-
ences. In ICML ’98, pages 170–178, 1998.

[9] G. Fung, S. Sandilya, and R. B. Rao. Rule extrac-
tion from linear support vector machines. In KDD ’05,
pages 32–40, New York, NY, USA, 2005. ACM Press.

[10] J. Furnkranz and P. Flach. An analysis of rule evalu-
ation metrics. In In ICML’03, pages 202–209. AAAI
Press, January 2003.

[11] D. Gamberger and N. Lavrač. Generating actionable
knowledge by expert-guided subgroup discovery. In
In PKDD’02, pages 163–174. Springer-Verlag, 2002.

[12] R. Herbrich, T. Graepel, and K. Obermayer. Large
margin rank boundaries for ordinal regression. MIT
Press, Cambridge, MA, 2000.

[13] H. Hirsh. Data mining research: Current status and fu-
ture opportunities. Statistical Analysis and Data Min-
ing, 2008.

[14] T. Joachims. Optimizing search engines using click-
through data. In KDD ’02: Proceedings of the eighth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 133–142, New
York, NY, USA, 2002. ACM Press.

[15] N. Lavrač, B. Cestnik, D. Gamberger, and P. Flach.
Decision support through subgroup discovery: Three
case studies and the lessons learned. Machine Learn-
ing, 57(1-2):115–143, 2004.

[16] P. M. Long and R. A. Servedio. Martingale boosting.
In In COLT 2005, volume 3559 of Lecture Notes in
Artificial Intelligence, pages 79–94. Springer, 2005.

[17] N. Lucas, J. Azé, and M. Sebag. Atherosclerosis Risk
Identification and Visual Analysis. In ECML/PKDD
2002 Discovery Challenge Workshop program, 2002.

[18] H. Mannila and H. Toivonen. Levelwise search and
borders of theories in knowledgediscovery. Data Min.
Knowl. Discov., 1(3):241–258, 1997.

[19] R. S. Michalski. A theory and methodology of induc-
tive learning. In R. S. Michalski, J. G. Carbonell, and
T. M. Mitchell, editors, Machine Learning: An Arti-
ficial Intelligence Approach, pages 83–134. Springer,
Berlin, Heidelberg, 1984.

[20] G. Piatetsky-Shapiro. Discovery, analysis, and pre-
sentation of strong rules. In Knowledge Discovery in
Databases, pages 229–248. AAAI/MIT Press, 1991.

[21] J. R. Quinlan. C4.5: programs for machine learn-
ing. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1993.

[22] A. Salleb-Aouissi, C. Vrain, and C. Nortet. Quant-
miner: A genetic algorithm for mining quantitative as-
sociation rules. In IJCAI, pages 1035–1040, 2007.

[23] T. Turmeaux, A. Salleb, C. Vrain, and D. Cassard.
Learning characteristic rules relying on quantified
paths. In L. N. et al., editor, In PKDD’03, pages 471–
482. Springer–Verlag, Lecture Notes in Computer Sci-
ence, Sept 2003.

[24] H. Yu. Svm selective sampling for ranking with ap-
plication to data retrieval. In In KDD ’05, pages 354–
363, New York, NY, USA, 2005. ACM.

Appendix

Attribute Type Description
ICO C Identification of a patient
ACTIV JOB C Physical activity in a job. 1:sits, 2: stands,

3:walks, 4:carries heavy loads,5: not stated
ACTIV AFT C Physical activity after a job. 1: sits, 2: moder-

ate activity, 3:great activity, 4: not stated
TRANSP JOB C Transport to go to work. 1:on foot, 2: by bike,

3:public means of transport, 4: by car, 9: not
stated

TIME JOB C Time to get to work. 5: half hour, 6: 1 hour,
7: 2 hours, 8: ¿2 hours, 9:not stated

BIRTH YEAR N Year of birth
ENTRY YEAR N Year of entry into the study
ALCO CONS N Alcohol consumption
TOBA CONS N Tobacco consumption
TOBA DURA N Smoking duration
MARIT STAT C Marital status. 1:married, 0: not married
EDUCATION C Reached education. 1: university, 0: not uni-

versity
IM C Myocardial infarction
ICT C Ictus
HT C Hypertension
HTL C Medicines in HT
DIAB C Diabetes
DIABD C Diet in DIAB
HYPL C Hyperlipidemia
HYPLL C Medicines in hyperlipidemia
MOC SUC C Urine sugar
MOC ALB C Urine albumen
BOLHR C Chest pain
CHLST N Cholesterol in mg%
TRIGL N Triglycerides in mg%
SYST N Blood pressure systolic
DIAST N Blood pressure diastolic
HEIGHT N Height (cm)
WEIGHT N Weight (kg)
BMI N Body Mass Index
TRIC N Skin fold triceps (mm)
SUBSC N Skin fold subscapularis (mm)
RSK FAMI C Family risk
RSK OBES C Obesity risk
RSK TOBA C Smoking risk
RSK HYPE C Hypertension risk
RSK CHOL C Cholesterol risk
GROUP C Normal, Risk, Pathological
DEATH C Patient dead or not

Table 5. Attributes of the atherosclerosis ta-
ble. The type “C” stands for categorical and
“N” for numerical.

Histograms in Figure 3 show for each of the attributes
TOBA CONSO, TOBA DURA, SYST and DIAST the
coverage of their various values in Top (blue) and Bottom
(red) of the ranking. High tobacco consumption during a
long period is more characteristic of the top than the bot-
tom of the ranking list and so are high systolic and diastolic
blood pressures. Figure 3. Histograms of some attributes as

extracted by YRank.

