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Abstract—We propose Semantic Model Vectors, an intermedi-
ate level semantic representation, as a basis for modeling and
detecting complex events in unconstrained real-world videos,
such as those from YouTube. The Semantic Model Vectors are
extracted using a set of discriminative semantic classifiers, each
being an ensemble of SVM models trained from thousands of
labeled web images, for a total of 280 generic concepts. Our study
reveals that the proposed Semantic Model Vectors representation
outperforms—and is complementary to—other low-level visual
descriptors for video event modeling. We hence present an end-
to-end video event detection system, which combines Semantic
Model Vectors with other static or dynamic visual descriptors,
extracted at the frame, segment or full clip level. We perform a
comprehensive empirical study on the 2010 TRECVID Multime-
dia Event Detection task1, which validates the Semantic Model
Vectors representation not only as the best individual descriptor,
outperforming state-of-the-art global and local static features as
well as spatio-temporal HOG and HOF descriptors, but also as
the most compact. We also study early and late feature fusion
across the various approaches, leading to a 15% performance
boost and an overall system performance of 0.46 Mean Average
Precision. In order to promote further research in this direction,
we made our Semantic Model Vectors for the TRECVID MED
2010 set publicly available for the community to use2.

Index Terms—complex video events, high level descriptor, event
recognition.

I. INTRODUCTION

Recent statistics show that videos “in the wild” are growing
at a staggering rate [1], [2]. This has posed great challenges
for data management, and has attracted the interest of the
multimedia analysis research community. These videos are
often taken by consumers in unconstrained environments with
different recording devices, including cell phones, cameras,
camcorders, or professional equipment. They usually contain
significant visual variations, largely due to different settings,
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Fig. 1. Examples from the 2010 TRECVID MED video event categories:
assembling shelter (top), batting in a run (middle) and making cake (bottom).
Note the significant variety of quality, viewpoint, illumination, setting, com-
pression, etc. both intra and inter categories.

contents, unconstrained camera motions, production styles,
and compression artifacts, to name a few. A challenging task is
to build an intelligent system to automatically recognize and
detect interesting video events, which will greatly facilitate
end users to better index and search video content.

Nevertheless, such videos present new challenges for event
detection, not only because of their content diversity and
lack of structure, but also for their remarkable growing quan-
tity, which necessitates scalable solutions in terms of both
computational cost and memory consumption. For example,
on Youtube alone, 35 hours of video are uploaded every
minute [2], and over 700 billion videos were watched in 20103.

Most previous work in event detection has been on visual
surveillance scenarios. Events in videos have been defined in
the literature as unusual occurrences in surveillance feeds, such
as temporally varying sequence of sub-events [13], [34], mo-
tion relativity of visually similar patches [50], or short human
actions, which may be modeled by graphical models such as
hidden Markov models (HMM) or Conditional Random Fields
(CRF) [14], [53], [61], [63]. Usually, the event only exists for
a short time span of up to a few seconds. Only recently, people
have started working on complex video event detection from
videos taken from unconstrained environment, where the video
events consist of a long sequence of actions and interactions
that last tens of seconds to several minutes. A number of
previous works model such complex events as combinations
of actions [37], scenes [35], people, and objects [36].

3 http://www.youtube.com/t/press statistics
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Related research has explored various visual features, either
static or spatiotemporal, to serve as the visual representation
for recognition, as documented in the TRECVID benchmark
[43] of past years. For example, local features [22], [54]
extracted at spatiotemporal interest points [8], [23], [54] have
been shown to obtain the best recognition accuracy for the
task of action recognition [51]. Most of these approaches
attempted to model the visual concepts or events directly from
the low level features [5], [25], [62], [65]. Notwithstanding
their demonstrated success, we believe that for complex events,
an intermediate level semantic representation will help bridge
the semantic gap between events and low level features. Such
intermediate semantic representation will make use of discrim-
inative learning to account for the large variations in low-level
features that correspond to the same semantic concept (e.g.
“people”, “cake”), and allow events to be expressed directly in
terms of concepts, rather than low level features (e.g. “baking
a cake” would contain at least one person interacting with cake
materials in various stages).

The Semantic Model Vectors we adopted form such an
intermediate semantic layer, composed by concatenating the
output from 280 discriminative semantic detectors. Based
on our prior work [44], [30], [10], each of these semantic
detectors is an ensemble SVM trained from thousands of
labeled web images. These semantic descriptors cover scenes,
objects, people, and various other visual semantics. Each of
these semantic dimensions provides the ability to discrimi-
nate different semantics from low-level and mid-level visual
cues, even though such discrimination may be noisy and
imperfect. We previously proposed the semantic model vector
representation for semantic content-based multimedia retrieval
and mining [44], [30] as well as for modeling the dynamic
evolution of semantics within video shots [10]. This paper is
a natural extension for clip-level event modeling and detection.
Torresani et el. [47] followed the same intuition and proposed
“classemes” for object category recognition, training weak ob-
ject classifiers based on an ontology of visual concepts, while
Xu et al. [57] used the Columbia374-baseline [59] semantic
concept classifiers for video event classification. As an alter-
native way to generate a mid-level semantic representation,
unsupervised topic modeling such as LDA/PLSA on top of
bag-of-visual-word local features has been employed to model
video events [52]. These works differ substantially from the
proposed Semantic Model Vectors, which are discriminative
classifiers with explicit assigned meanings and learned from a
completely separate and independent training set.

We adopt the dataset released by the TRECVID Multimedia
Event Detection (MED) Track in 2010 for evaluating our
semantic model vector-based representation. This dataset con-
tains 3,778 video clips, representing three complex events, i.e.,
Assembling a shelter, Baking a cake and Batting in a run plus a
random category with videos not representing any of the other
three categories. Each of these events spans an entire video clip
(up to one hour) and is comprised of a collection of different
objects, scenes, and actions. For example, the event Batting
in a run involves a hitter batting, followed by a baserunner
scoring a run.

We carefully examined the performance of our proposed

semantic model vectors on the TRECVID MED task, and
compared it with other low-level visual descriptors, which
include both static and spatiotemporal visual features. We built
SVM classifiers on top of our semantic model vectors, and
on top of static visual (global or local) and dynamic spatio-
temporal descriptors, extracted either at frame (keyframes or
temporally sampled frames) or video level. Our study revealed
that the proposed semantic model vector-based representation
produced the best classifier over all detectors based on a single
descriptor for this video event detection task, which achieved
an Average Precision of 0.392. This demonstrated that the
semantic model vectors indeed can better bridge the semantic
gap.

Our investigation also implies that the semantic model
vectors are largely complementary to low-level visual features.
Therefore, we further develop a comprehensive solution for
video event detection by fusing the semantic model vectors
with low-level visual features. In our solution, both early and
late feature fusion is performed in a hierarchical fashion, which
groups together both static and dynamic feature classifiers.
Our empirical evaluation indicates that such fusion can signifi-
cantly boost the recognition accuracy, i.e., it increases Average
Precision to 0.46 for detecting the target video events.

The remainder of the paper is organized as follows: in
Section II, we review related work on complex video event
detection, Section III describes in detail the type of video
events investigated in this work. We present details of the
Semantic Model Vectors in Section IV. In Section V, we
introduce the proposed framework with the features used for
event recognition, also exploring feature fusion strategies. We
report the results of our experiments on the 2010 TRECVID
MED corpus and discuss them in Section VI. Finally, in
Section VII, we draw conclusions and discuss future research
directions.

II. RELATED WORK

We will briefly discuss some related work on complex video
event detection. We will first summarize some previous tech-
nical efforts, followed by a discussion of related benchmark
datasets for evaluation.

Largely inspired by the success of structure-free bag-of-
words (BoW) representations for visual object recognition,
previous systems have employed bags of visual words, or spa-
tiotemporal visual words, to describe objects, scenes, actions,
or events [40]. For example Ballan et al. [4] represent an event
as a sequence of BoW histograms and use a string kernel to
match them. Zhou et al. [64] use Gaussian Mixture Models
(GMM) instead of the standard BoW approach to describe
an event as a SIFT-Bag. Jiang et al. [19] follow the same
direction by defining an event as a combination of short-term
audio-visual atoms. Nevertheless, valuable spatial context is
neglected due to the spatial structure-free BoW representation,
which limits the potential of these methods. A more global
approach has also been pursued to model directly a whole
scene employing holistic, biologically inspired descriptors
such as GIST [33] and its derivatives [15], [16], [45].

Besides direct discriminative modeling, some works lever-
age web data (images [17] or videos [9]) to build reference
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models for actions or events. A few attempts have also been
made to build and leverage ontologies to describe events [3],
[6], [42]. Some other works have focused on context and inter-
actions among objects, scenes and people in order to describe
and recognize complex events. Contextual information indeed
has been modeled in many different ways, such as human-
object interaction [46], [55], [60], visual context for object [11]
and scene recognition [56], scene and action combination [29],
object and action combination [12], and object, person and
activity relations [38]. Moreover, temporal context has been
explored in previous work by modeling complex activities
as series of simple actions [21], [39]. Some works model
concepts in atomic units (action, scene and object) for still
images [24] or short, simple actions [18].

Before the TRECVID 2010 MED task dataset, there was
no clear benchmark for complex video event detection. A few
datasets have been introduced in previous work for simple
action recognition, including KTH [41], Moving People Stan-
ford [32], Hollywood [22], Youtube actions dataset [26] (now
expanded to UCF50), and UCF Sports Actions dataset, to list a
few. INRIA recently introduced the Hollywood2 [29] dataset,
which explicitly aims at finding a correlation between actions
and scenes. However, the only existing datasets which may be
suitable for evaluation of research on complex video events
are the Kodak’s consumer video benchmark [27] and the
TRECVID 2005 news collection. Most recently, the Columbia
Consumer Video (CCV) dataset [20] was introduced, which is
also designed for event category recognition in unconstrained
videos.

III. COMPLEX VIDEO EVENTS

Our attention is on videos “in the wild”, where a typi-
cal video is Youtube-like, often generated by users in un-
constrained environments. Some datasets present the same
“wilderness” of unconstrained Youtube videos in terms of lack
of editing, non-professional recording and variety of illumina-
tion, camera motion, background clutter, changes in object
appearance, etc. However, as reported in Table I, most of
the existing sets are quite limited in length, particularly when
compared to the average length of Youtube videos, which is
approximately 4 minutes and 12 seconds4. As mentioned in
Section II, the TRECVID MED corpus we investigate in this
work is the closest to Youtube in terms of clip length.

The definitions of the video events we analyze, as posted
on the TRECVID MED official site5, are the following:

• Assembling a shelter: One or more people construct a
temporary or semi-permanent shelter for humans that
could provide protection from the elements.

• Batting in a run: Within a single play during a baseball-
type game, a batter hits a ball and one or more runners
(possibly including the batter) scores a run.

• Making a cake : One or more people make a cake.
Some example video frames from each category are reported

in Figure 1. Clearly evident are the substantial challenges
imposed by the widely varying content, quality, viewpoints,

4 http://www.sysomos.com/reports/youtube#video-statistics
5 http://projects.ldc.upenn.edu/havic/MED10/EventKits.html

TABLE I
STATISTICS ON THE CURRENTLY AVAILABLE VIDEO EVENT DATASETS.

NOTE HOW THE 2010 TRECVID MED CORPUS CONTAINS MUCH
LONGER VIDEOS THAN ANY OTHER AVAILABLE DATASET.

Dataset # Videos Avg. Length(sec) # Classes
KTH 559 12.5 6

Hollywood2 2,517 14.8 12
UCF50 6,680 7.44 50
Kodak 3,231 97 25

TRECVID 2005 45,000 12.8 14
CCV 9,317 80 20

TRECVID MED 3,778 121.27 3

settings, illumination conditions, compression, and so on, both
across and within event categories.

Most existing approaches and datasets for video event
recognition focus on building classifiers for short actions
through spatio-temporal features and for concepts based on
low-level visual descriptors extracted from keyframes.

Complex video events however cannot be described by a
single action or keyframe. For example, the category Making
a cake comprises multiple actions (mixing, inserting into
oven, tasting) which involve different interactions between
primitive semantics (people and objects) over extended periods
of time. Therefore, a complex representation which involves
such semantic primitives is needed. This concept is illustrated
in Figure 2, where a Mixing clip from the UCF50 dataset (top)
is compared against a Making a cake video from TRECVID
MED (bottom), and a subsegment (middle) of the latter. From
the significant frames reported for each clip, the greater length
and complexity of the bottom Making a cake video emerges,
since it spans a number of objects and settings (from mixing
in the bowl to cooking in the oven, and finally decorating).

A portion of the clip, expanded in the middle row of the
Figure, represents a part of the cake preparation which involves
mixing in a bowl. Notwithstanding a significant difference in
visual appearance, the circular movement of the mixer closely
resembles that of the spoon in the Mixing clip in the top row.
Therefore, following the principles adopted in the literature for
action and event recognition, one can correctly match the two
clips by choosing an appropriate representation, for example
the Histogram of Flow (HOF), which focuses in motion rather
than on appearance, assuming that the two sequences are
properly aligned temporally.

We build a vocabulary of 100 spatio-temporal HOF words,
with K-means clustering, from a dataset of 141 positive and
294 negative clips randomly extracted from the UCF50 dataset,
using the widely adopted BoW approach. The graphs in Fig-
ure 2 represent the occurrence frequency of HOF codewords
in the three clips. The similarity between the HOF BoW
descriptor of the UCF50 Mixing clip (top, in green) and
the subshot from Making a cake video (middle, in blue) is
quite clear. However, when considering the whole video from
the TRECVID MED set (bottom, in red), we see that the
distribution of HOF words is quite different. The reason is that
the codewords associated with the mixing part are “masked”
by the distribution of the codewords associated with the
extremely large number of features appearing in the remainder
of the clip. Hence, the complexity and length of the video

http://www.sysomos.com/reports/youtube#video-statistics
http://projects.ldc.upenn.edu/havic/MED10/EventKits.html
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Fig. 2. Comparison between a UFC50 Mixing clip (top, in green) and a TRECVID MED Making a cake video (bottom, in red) based on 100 codewords
Bag of Words HOF representation. There is a close similarity in codewords distribution between the Mixing clip and a subshot of the Making a cake clip
(expanded from the bottom to the middle row, in blue), which is also evident in the circular motion shown in the frames (on the left side of the Figure). Such
similarity is lost when the longer, composite whole video in the bottom is considered.

play against its distinctiveness from the low-level feature point
of view. This is also confirmed in the experimental results
reported in Section VI-C, where it is clear that the low-level
feature representation has drawbacks, even when sophisticated
matching schemes are employed, such as temporal pyramid-
based matching.

Therefore, the low-level feature-based representations
adopted so far in the literature fails to capture the structure
and semantics in long, complex video events. In fact, while
other types of state of the art low level descriptors, such as
GIST and SIFT, may achieve slightly better performance at
the cost of higher dimensionality, they are still limited, as
evidenced by the experimental results on the 2010 TRECVID
MED collection reported in Figures 6, 7, and 10.

In this work, we try to alleviate this limitation by using a
semantically higher level representation, the Semantic Model
Vectors, and integrating it with multiple low-level features
in a composite framework. The Semantic Model Vectors,
comprising a semantic representation, are able to mitigate the
semantic gap, as demonstrated in the experimental results of
Section VI.

Besides accuracy, compactness of the descriptors is an
important consideration for feasibility, particularly for large-
scale multimedia collections such as the one investigated in
this work. The proposed Semantic Model Vector, with its 280
dimensions, offers a much more compact representation with
respect to traditional low-level descriptors, especially when
associated with spatial and/or temporal pyramid frameworks
(see the detail in Figure 7).

In the next two Sections, we explain in detail the Semantic
Model Vectors and the end-to-end event recognition frame-
work.

IV. SEMANTIC MODEL VECTORS

Intuitively, complex temporal events can be described using
a combination of elementary visual concepts, their relation-
ships, and temporal evolutions. If an image is worth a thousand
words, then a video can be considered the equivalent of a
sentence, or even a paragraph.

To this end, we propose an intermediate semantic layer
between low-level features and high-level event concepts. This
representation, named Semantic Model Vectors, consists of
hundreds of discriminative semantic detectors, each derived
from an ensemble SVM, trained from a separate collection of
thousands of labeled web images, using a common collection
of global visual features (described in Section V-B and prior
reports [31], [58]). These semantic descriptors cover scenes,
objects, people, and various image types. Each of these seman-
tic dimensions provides the ability to discriminate among low-
level and mid-level visual cues, even if such discrimination is
noisy and imperfect across different data domains.

The Semantic Model is an ensemble of SVMs with RBF
kernel learned from a development set of thousands of manu-
ally labeled web images, which were randomly partitioned into
three collections: 70% as the training set, 15% as the validation
set, and 15% as the held-out set. The number of feature types
from which each of the individual SVMs are learned was 98,
by means of computing 13 different global visual descriptors
including color histogram, color correlogram, color moment,
wavelet texture, edge histogram, etc., at up to 8 granularities
(i.e., global, center, cross, grid, horizontal parts, horizontal
center, vertical parts, and vertical center).

For each feature type, we learn base models (RBF SVMs)
from a number Nb of bags of training data, randomly sampled
with a balanced number of positive and negative samples, with
sample ratio rd. The default parameters for Nb and rd used
to train all the base models for the Semantic Models were
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Fig. 3. The usefulness of Semantic Model Vectors for classifying events. Top, T-score of top 50 model vector dimensions for each event, red indicates
positive correlation, blue negative correlation. Bottom, example model vectors that are informative for classifying events: sand → batting in run (sand on the
beach is similar to sandy baseball courts); indoors → making cake (cakes are usually cooked in kitchens, whereas assembling shelters and playing baseball
are events typically occurring outdoors).

2 and 0.2, respectively, which result in a pool of N = 196
base models for each concept. To minimize the sensitivity
of the parameters for each base model, we choose the SVM
parameters based on a grid search strategy. In our experiments,
we build the SVM models with different values on the RBF
kernel parameters C and γ, the relative cost factors of positive
vs. negative examples, the feature normalization schemes, and
the weights between training error and margin. The optimal
learning parameters are selected based on the performance
measure on 2-fold cross validation on validation data. Each
model is then associated with its cross validation performance,
where average precision is employed as the performance
measure.

Finally, the fusion strategies of the base models into an
ensemble classifier are determined based on average precision
performance on the held-out data. To reduce the risk of over-
fitting, we control the strength and correlation of the selected
base models by employing a forward model selection step.
The algorithm iteratively selects the most effective base model
from the unit models pool, adds it to the composite classifier
without replacement, and evaluates its average precision on the
held-out set. The Semantic Model output is then the ensemble
classifier with the highest average precision observed on the
held-out set. This selection step is very fast, and typically
prunes more than 70-80% base models in practice. In fact,
the number of selected base models Ni for our 280 Semantic
Models is much smaller than N : the mean and standard

deviation values are Ni = 14 ± 6 for i = 1, .., 280, where
Ni is the number of base models forming the final ensemble
SVM for the i-th Semantic concept (see details in Figure 4).

Semantic Concept detection in a new image x consists in
classifying the image using the corresponding ensemble SVM.
The score for Semantic Concept i on x is then

SCi(x) =

Ni∑
k=1

wkbk(x) (1)

SCi(x) is the weighted sum of the individual base models
bk scores on x. The weights wk are the AP cross-validation
scores learned during training.

Semantic concept detection is done starting from the low
level features extracted at multiple, fixed granularities. This
process is done at the full image level, no object detection
or sliding window approaches are required. The detection
time thus depends on the number/type of features selected
in the ensemble SVM, plus the extraction time for individual
SVM scores. The average extraction time per image is 0.6709
seconds for the low-level features extraction step, which is
shared among Semantic Models, and 0.0664 ± 0.04 seconds
to obtain the ensemble SVM prediction (mean ± standard
deviation over the 280 Semantic Models), on a 2.33GHZ 32bit
Windows machine with 3GB of RAM.

The average precision and accuracy values for the individual
Semantic Models on the held-out set are respectively 0.7579±
0.11 and 0.84 ± 0.072 (mean ± standard deviation over the
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280 Models). The details of number of base models, extraction
time and average precision scores of each individual Semantic
Model are reported in Figure 4.

The final Semantic Model Vectors descriptor results from
the concatenation of the 280 semantic detectors SCi for each
frame x.

SMV (x) = [SC1(x), ..., SCi(x), ..., SC280(x)] (2)

Note that this representation (after being aggregated from
frame level to video level) is a lot more compact than most
descriptors introduced in Sections V-B and V-C, as shown in
Figure 7.

Figure 3 shows a few examples of Semantic Model Vectors.
At the top, is a visualization of the classification power of
Model Vectors with respect to each of the three target events
in the 2010 MED development set. The x-axis shows a union
of the top 50 model vector dimensions most correlated to each
event, where correlations scores are measured using Student’s
T-test statistic for score distributions with unequal sample
sizes and variances6. Red hues denote positive correlation,
and blue hues denote negative correlation—likely/unlikely that
the concept detector is triggered for the event. The magnitude
of the T-scores is reflected in the saturation. Some examples
of these concept detector results are included in the bottom
part of the Figure. Our hypothesis is that the combination
and temporal aggregation of the semantic concepts maps
closely to complex video events, for example, the making cake
event is likely to include food prepared on a table in an
indoor setting (i.e. a kitchen). There is not always a one to
one correspondence between video categories and Semantic
Models, since some of the categories the Model Vectors were
trained on are simply not relevant to the high level event
categories (for example the model vector for Cellphone and
the event Batting in a run). Nonetheless, if we look at the
Model Vectors outputs as features, the space they span has
a dimensionality (280) which is sufficiently high to provide
a separation in feature space to discriminate high level video
event categories, even when a direct correlation model vector-
high level event is not found. The SVM models we learn for
the high level video events, using the model vector scores
concatenated into a feature vector, basically perform a feature
selection.

V. DETECTION SYSTEM AND ALGORITHMS

Our event detection system includes a variety of approaches.
This allows us to explore effective methods for the new
multimedia event detection domain, and forms the basis of
a comprehensive performance validation.

An overview of the proposed event detection system is
shown in Fig. 5, and there are four main parts for processing
and learning (roughly from left-to-right in the layout): video
processing, feature extraction, model learning and decision
aggregation. The rest of this Section will discuss each part
in detail.

6 http://en.wikipedia.org/wiki/Student’s t-test#Unequal sample sizes.2C
unequal variance

A. Video processing

Each input video is processed a number of different ways
in order to extract frame-based and dynamic visual features.
Our system has three different modes to prepare a video for
feature extraction.

• Uniformly sampled frames. We decode the video clip,
and uniformly save one frame every two seconds. These
frames are later used to extract static visual descriptors:
local (SIFT), GIST, Global and Semantic Model Vectors.

• Adaptively sampled keyframes. We perform shot
boundary detection using color histogram differences
in adjacent frames, we then take one frame per shot.
This frame sampling scheme produces less shots for the
event videos since amateur videos tend to have long and
unsteady shots. By being temporally adaptive this scheme
may decrease overall appearance diversity in the frames,
yet it avoids over-sampling from long shots.

• Down-sampled short video segments. We keep short
video segments for extracting spatial temporal features
(Sec. V-C). The video sequence is downsampled to five
frames per second to reduce computational time, and the
spatial temporal features are extracted within windows of
four seconds each.

B. Frame Descriptors

We extract a large number of static image features from
the sampled frames/keyframes. These features capture a wide
range of image information including color, texture, edge, local
appearances and scene characteristics. We build upon these
features to extract the Semantic Model Vectors (as described
in Section IV) and carry out a comprehensive comparison of
state-of-the-art features for classification.

• Local descriptors are extracted as SIFT [28] features
with dense spatial sampling for keyframes – we use 16
pixels per grid, resulting in approximately 12,000 points
per image, and Harris Laplace interest point detection for
uniformly sampled frames. Each keypoint is described
with a 128-dimensional vector containing oriented gra-
dients. We obtain a “visual keyword” dictionary of size
1000 (for keyframes) and 4000 (for uniformly sampled
frames) by running K-means clustering on a random
sample of approximately 300K interest point features,
we then represent each frame with a histogram of visual
words. For keyframes we used soft assignment following
Van Gemert et al. [49] using σ = 90.

• GIST : the GIST descriptor [33] describes the dominant
spatial structure of a scene in a low dimensional repre-
sentation, estimated using spectral and coarsely localized
information. We extract a 512 dimensional representation
by dividing the image into a 4x4 grid. We also histogram
the outputs of steerable filter banks on 8 orientations and
4 scales.

• Global descriptors are extracted using 13 different visual
descriptors on 8 granularities and spatial divisions. SVMs
are trained on each feature and subsequently linearly
combined in an ensemble classifier. We include a sum-
mary of the main descriptors and granularities. Details on

http://en.wikipedia.org/wiki/Student's_t-test#Unequal_sample_sizes.2C_unequal_variance
http://en.wikipedia.org/wiki/Student's_t-test#Unequal_sample_sizes.2C_unequal_variance
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Concept BM AP Time Concept BM AP Time Concept BM AP Time Concept BM AP Time Concept BM AP Time 

Airplane 7 0.75 0.033 Door 22 0.9 0.066 Magazine 18 0.86 0.057 SLScreenCapture 16 0.86 0.054 Wire 20 0.75 0.101 

Animal 11 0.7 0.058 Downtown 13 0.78 0.169 Magenta 1 0.99 0.005 Ship 7 0.35 0.048 Wood 19 0.86 0.053 

Army 15 0.83 0.074 Drawing 15 0.81 0.076 Map 18 0.84 0.006 Shirt 29 0.71 0.145 Yellow 9 1 0.009 

BBQ 17 0.89 0.062 Dress 24 0.87 0.092 Market 16 0.87 0.053 Shoe 19 0.74 0.113 Zoo 13 0.88 0.035 

BW 1 0.97 0.001 Earth 21 0.71 0.126 Mask 7 0.87 0.028 Sign 8 0.35 0.043 airport 14 0.82 0.056 

Baseball_Cricket 13 0.75 0.066 Facecloseup 7 0.72 0.036 Meeting 12 0.4 0.05 Silver 16 0.82 0.085 bear 14 0.7 0.086 

Basketball 6 0.31 0.037 Fair 12 0.87 0.039 Menu 13 0.88 0.039 Skiing 7 0.17 0.027 birds 26 0.67 0.139 

Beach 19 0.58 0.098 Fashion 13 0.81 0.043 Metal 13 0.78 0.047 Skirt 11 0.59 0.04 boats 15 0.64 0.071 

Bed 19 0.85 0.108 Fence 13 0.81 0.042 Microphone 16 0.85 0.05 Skyline_day 10 0.62 0.035 book 20 0.38 0.059 

Beer 19 0.79 0.079 Festival 14 0.87 0.066 Mirror 15 0.81 0.062 Skyline_night 24 0.87 0.086 bridge 14 0.38 0.082 

Bicycle 16 0.81 0.073 Field 22 0.85 0.093 Monitor 27 0.84 0.121 Smoke 16 0.75 0.06 buildings 19 0.79 0.073 

Bird 20 0.73 0.079 Fire_Flame 17 0.86 0.075 Monument 10 0.91 0.035 Snooker 2 0.52 0.01 cars 16 0.48 0.06 

Black 1 1 0.002 Fireworks 9 0.94 0.048 Motorcycle 11 0.43 0.03 Snow 13 0.79 0.087 castle 13 0.31 0.06 

Blonde 12 0.79 0.041 Fish 14 0.46 0.078 Mountain 1 0.51 0.017 Snow_Scene 11 0.69 0.042 cityscape 22 0.79 0.112 

Blue 1 1 0.002 Flag 13 0.83 0.07 Mountain_Scene 13 0.76 0.23 Soccer_football 8 0.87 0.051 clouds 15 0.85 0.094 

Boat 20 0.7 0.109 Floor 19 0.85 0.081 Museum 20 0.84 0.234 Sport 17 0.86 0.094 coral 13 0.77 0.04 

Brick 18 0.9 0.076 Flower_Scene 15 0.84 0.041 Nature 5 0.98 0.103 Stage 13 0.89 0.06 cow 11 0.46 0.032 

Brown 1 0.95 0.007 Food 4 0.98 0.01 Necklace 19 0.75 0.134 Stairs 24 0.86 0.101 dancing 15 0.4 0.067 

Brunette 9 0.57 0.058 Forest 18 0.9 0.07 Newspaper 17 0.89 0.141 Star 22 0.82 0.099 earthquake 27 0.51 0.016 

Building 4 0.97 0.023 Frost 9 0.71 0.039 Office 11 0.84 0.092 Statue_Sculpture 20 0.83 0.074 elk 11 0.67 0.04 

Bush 16 0.76 0.076 Fshing 19 0.82 0.05 Orange 5 0.97 0.039 Store 13 0.87 0.05 fire 8 0.44 0.046 

Butterfly 20 0.93 0.05 Fur 18 0.83 0.087 Outdoors 1 1 0.011 Street_Scene 10 0.69 0.065 flags 11 0.47 0.017 

CD_DVD 14 0.86 0.068 Glass 21 0.76 0.102 Painting 19 0.83 0.147 Streetart 14 0.9 0.065 flowers 19 0.89 0.079 

Cake 13 0.91 0.066 Glasses 12 0.85 0.056 Parade 7 0.01 0.051 Studio 20 0.84 0.073 fox 17 0.49 0.101 

Camera 15 0.76 0.063 Gold 14 0.78 0.042 Park 17 0.75 0.116 Suit 17 0.75 0.053 garden 12 0.77 0.078 

Capitol 7 0.49 0.021 Graffiti 17 0.86 0.087 Party 4 0.76 0.042 Sunset 7 0.98 0.034 glacier 11 0.52 0.031 

Car 9 0.9 0.047 Grass 7 0.99 0.034 Pet 12 0.73 0.084 Surfing 16 0.91 0.051 military 25 0.63 0.127 

Carnival 16 0.93 0.071 Green 1 1 0.002 Phone 11 0.86 0.067 Swimming 16 0.73 0.02 moon 9 0.57 0.037 

Carpet 20 0.86 0.068 Greenery 1 1 0.003 Photo 23 0.75 0.283 Table_Desk 24 0.89 0.109 nighttime 15 0.83 0.076 

Cartoon 14 0.62 0.07 Grey 16 0.8 0.065 Photobooth 17 0.95 0.177 Tan 13 0.71 0.062 ocean 16 0.83 0.07 

Cat 10 0.54 0.047 Group_People 13 0.85 0.076 Pillow 12 0.87 0.148 Team 11 0.92 0.041 person 24 0.78 0.071 

Celebration 12 0.89 0.06 Harbor 11 0.35 0.036 Pink 13 0.9 0.079 Television 15 0.84 0.051 plane 17 0.73 0.051 

Cellphone 18 0.86 0.088 Hat 16 0.83 0.089 Plant 13 0.88 0.153 Tennis 2 1 0.005 plants 17 0.74 0.074 

Cemetery 21 0.91 0.056 Hiking 13 0.91 0.04 Portrait 8 0.75 0.116 Tile 20 0.84 0.075 police 17 0.45 0.111 

Chair 25 0.85 0.116 Hill 14 0.83 0.05 Poster 23 0.87 0.247 Tour 14 0.77 0.068 protest 19 0.67 0.08 

Chart 15 0.45 0.035 Hockey 20 0.95 0.088 Presentation 8 0.7 0.046 Tower 14 0.85 0.035 railroad 19 0.42 0.089 

Church 18 0.64 0.06 Horse 13 0.88 0.061 PrintAd 21 0.83 0.144 Town 12 0.75 0.068 reflection 12 0.8 0.095 

CivilConstruction 18 0.84 0.055 Horses 10 0.51 0.062 PublicAquarium 13 0.9 0.062 Train 2 0.24 0.006 rocks 13 0.74 0.047 

Clock 21 0.78 0.071 Hotel 17 0.74 0.062 Purple 8 0.94 0.033 Tree 10 0.9 0.062 running 22 0.43 0.1 

Cloud 3 0.96 0.024 House 10 0.67 0.046 Purse 15 0.65 0.081 Truck 19 0.94 0.094 sky 15 0.84 0.078 

Coat 13 0.55 0.053 Icon 19 0.88 0.066 Racing 8 0.94 0.042 Urban_Scene 14 0.87 0.06 soccer 26 0.81 0.065 

Color 14 0.77 0.057 Individual 24 0.84 0.205 Radio 16 0.84 0.092 Video 13 0.82 0.06 sports 23 0.57 0.153 

Computer 6 0.41 0.027 Indoors 1 1 0.004 Rain 24 0.79 0.113 Village 17 0.84 0.042 statue 20 0.24 0.057 

Conference 16 0.9 0.076 Infant 10 0.33 0.05 Rainbow 7 0.34 0.027 Violet 17 0.89 0.041 street 10 0.69 0.053 

Couch 13 0.83 0.085 Island 19 0.77 0.057 Rally 15 0.9 0.067 Wall 22 0.8 0.086 sun 10 0.83 0.055 

Couple 14 0.81 0.068 Jeans 9 0.76 0.048 Red 5 0.99 0.016 War 9 0.77 0.037 surf 9 0.81 0.012 

Crowd 9 0.31 0.011 Jewelry 17 0.83 0.077 Ring 20 0.7 0.095 Watch 19 0.71 0.1 swimmers 18 0.62 0.078 

Cruise 12 0.81 0.047 Keyboard 16 0.88 0.046 Road 13 0.77 0.103 Water_Scene 10 0.66 0.051 tattoo 17 0.32 0.084 

Curtain 18 0.72 0.077 Knitting 18 0.9 0.094 Rock 12 0.82 0.038 Waterfall 4 0.59 0.013 temple 14 0.36 0.111 

Cyan 8 0.98 0.004 Lake 1 0.83 0.001 Roof 18 0.76 0.066 Wave 13 0.88 0.04 tiger 17 0.79 0.057 

Cycling 13 0.92 0.041 Lamp 16 0.82 0.042 Room 16 0.88 0.068 Wedding 17 0.82 0.08 toy 16 0.45 0.058 

Dance 17 0.9 0.081 Landscape 20 0.87 0.055 Sailing 20 0.87 0.074 White 5 0.98 0.018 valley 21 0.84 0.084 

Desert 20 0.84 0.057 Leaf 6 0.55 0.021 Sand 17 0.61 0.12 Whitehouse 13 0.97 0.025 vehicle 15 0.77 0.07 

Diamond 21 0.61 0.098 Leather 17 0.73 0.08 Scarf 20 0.81 0.122 Whitewater_Raft 13 0.82 0.043 water 11 0.74 0.061 

Dirt 18 0.88 0.075 Lens 20 0.8 0.067 School 15 0.82 0.075 Window 17 0.55 0.062 whales 11 0.71 0.036 

Dog 13 0.51 0.095 Logo 13 0.8 0.053 Seat 14 0.76 0.05 Winter_Scene 10 0.67 0.053 zebra 8 0.71 0.013 

Fig. 4. Statistics for the 280 Model Vectors. BM: number of base SVM models used to generate the final ensemble classifiers, AP: average precision
cross-validation score obtained during the training process, Time: classifier scoring (i.e., evaluation) time per image (in seconds).
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Fig. 5. System framework adopted for video event recognition. We investigated multiple layers of operation/representation: video vs frame level, static vs
dynamic features, early vs. late aggregation (fusion).

features and ensemble classifier training can be found in
our prior report [7].
Color Histogram — global color distribution represented
as a 166-dimensional histogram in HSV color space.
Color Correlogram — global color and structure rep-
resented as a 166-dimensional single-banded auto-
correlogram in HSV space using 8 radii depths.
Color Moments — localized color extracted from a 5x5
grid and represented by the first 3 moments for each
grid region in Lab color space as a normalized 225-
dimensional vector.
Wavelet Texture—localized texture extracted from a 3x3
grid and represented by the normalized 108-dimensional
vector of the normalized variances in 12 Haar wavelet
sub-bands for each grid region.
Edge Histogram—global edge histograms with 8 edge
direction bins and 8 edge magnitude bins, based on a
Sobel filter (64-dimensional).
Having a large diversity of visual descriptors is important
for capturing different semantics and dynamics in the
scene, as so far no single descriptor can dominate across a
large vocabulary of visual concepts and events, and using
all has shown robust performance [7], [48].
The spatial granularities include global, center, cross,
grid, horizontal parts, horizontal center, vertical parts
and vertical center—each of which is a fixed division
of the video frame into spatial layout regions, and then
concatenating the descriptor vectors from each region.
Such spatial divisions have shown improved performance
and robustness in image/video retrieval benchmarks such
as TRECVID [43].

C. Spatial-Temporal Features

It is open for debate whether the essence of an event is in
its visual appearances over time or in the motion dynamics,
though strong arguments for both sides suggest considering
both. We compute spatial-temporal features using both motion
and dynamic texture information. We detect spatial-temporal
interest points (STIP) [23] over the down-sampled video seg-
ments (Sec. V-A), within temporal windows of 20 frames (four
seconds). We then compute histogram of gradients (HOG) and
histogram of flow (HOF) features extracted in spatio-temporal
regions localized around each STIP. For both HOG and HOF
features we generated a codebook of 1000 visual words by
clustering a data sample of approximately 300K and computed
bag-of-words histograms similar to those for the SIFT features
in Section V-B, with soft assignment.

We explore three aggregation methods both for HOG and
HOF. The first is to build a single BoW histogram directly for
the entire video, resulting in a 1000 dimensional descriptor
(named HOG(F) Pyr0). The second employs the Temporal
Pyramid Matching scheme [57], with the video temporally
split into 2 and 4 segments. A BoW histogram is computed for
each shot, and the descriptors are concatenated and weighted
according to the temporal level at which they were computed
(0.25 for levels 0 and 1, 0.5 for level 2). As reported in
Figure 9, we test two different pyramidal configurations:
HOG(F) Pyr1x2 (3000 dimensional, with whole video and
two halves segments concatenated) and HOG(F) Pyr1x2x2
(7000 dimensional, with whole video, two halves and four
quarters segments concatenated). Since multiple STIP can be
detected in the same frame, we also explore computing a BoW
histogram for each frame where STIP were found. We then
aggregate from frame level to video level using the same
methods employed for the static features and introduced in
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the next Section, thus obtaining 1000-dimensional vectors. We
name descriptors obtained with this third aggregation method
simply HOG and HOF.

D. Model learning

One-vs-all SVMs with RBF kernel are trained, indepen-
dently for each category, based on each descriptor. During
training for one category, all the videos from the other
categories (including the random one) are used as negative
examples. Parameters C and γ are computed though grid
search on a 5-fold cross validation, with a 70% training and
30% validation random splits on both positive and negative
examples of the development set. Once the best parameters are
determined, the SVMs are retrained on the whole development
set.

Either sampling approach seen in Section V-A typically
produces multiple frames per video; this yields several features
vectors per video for each descriptor (excluding the Pyramid
versions of the HOG and HOF features). Given that the
problem we investigate consists in classifying whole videos
and not individual frames, an aggregation process from frame
level to video level is necessary.

We perform such aggregation both at feature level (early
fusion) and at prediction level (late fusion). For all features
besides Global, the descriptors extracted from the individual
frames are combined through average or max aggregation into
a single descriptor, representative of the whole video.

We also test aggregation at prediction level, meaning train-
ing a classifier at the frame level and then combining the
predictions on the individual frames of a test video into a
final score. This approach is used for the Global descriptor,
for which we take the predictions of the ensemble classifier on
the frames of a video and averaged them to obtain the score
for the entire video.

Finally, we performed late fusion to combine the predictions
of models trained on different descriptors, which offer com-
plementary information. First we grouped static features and
dynamic features separately, using linear combinations with
uniform weights. We then performed late fusion involving all
the descriptors in two ways: hierarchical, as a combination
of the static and dynamic sets, and horizontal, as a linear
combination of all the features.

E. Feature Fusion

Our baseline approach consists of training RBF kernel
SVMs based on individual descriptors. However, we notice
that such descriptors are inherently complementary under
different perspectives:

• Semantic Model Vectors operate on a higher semantic
level with respect to all the other ones.

• GIST, Global, SIFT, and Semantic Model Vectors are in-
herently static, as they operate on individual (key)frames,
while HOG and HOF are dynamic, as they analyze spatio-
temporal volumes within the videos.

• GIST, Global and Semantic Model Vectors are global
features that analyze a whole image, while SIFT, HOG

and HOF model patches localized around local interest
points.

Furthermore, even for individual descriptors, we also needed
a way of obtaining entire video clip predictions starting from
features extracted at multiple frames.

Therefore we apply ensemble late fusion methods to com-
bine all event detection hypotheses generated by the differ-
ent approaches. We pursue different combination strategies
according to the principles adopted:

• Frame to video aggregation: for individual descriptors,
we try combinations both at the feature level and at the
prediction score level, using averaging or max pooling.
We find that aggregating frame features into a single
video descriptor and obtaining the clip prediction based
on the single video-level descriptor outperforms frame-
level detection followed by video-level prediction score
aggregation.

• Horizontal combination of all descriptors: we average the
predictions scores of all individual descriptors at every
(key)frame, then perform the same frame-to-video score
aggregation described above.

• Hierarchical grouping into static and dynamic features:
we first group the descriptors into static (GIST, Global,
SIFT, and Semantic Model Vectors) and dynamic (HOG
and HOF) and obtain two aggregate frame scores from
them (static score and dynamic score). Then, we further
combine the static and dynamic scores into a final pre-
diction for every frame and, finally, use average pooling
to aggregate from frames to video.

The results of such fusion strategies are reported in Sections
VI-B,VI-C and VI-D.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

We evaluate the different approaches outlined in the pre-
vious Sections on the 2010 TRECVID MED corpus, which
consists in 1,723 development and 1,742 test videos of length
varying from a few seconds to an hour, corresponding to three
event categories: Making shelter, Baking cake and Batting in a
run, plus a random category of videos serving as a distractor
set. Table II summarizes the composition of the dataset, spec-
ifying also the number of (key)frames extracted with uniform
and adaptive sampling. From the Table clearly emerges the
imbalance between positive and negative examples in both
development and test sets.

TABLE II
VIDEO AND FRAMES DISTRIBUTION OF THE 2010 TRECVID MED

CORPUS ON WHICH WE PERFORMED OUR EXPERIMENTS.

Category # Videos # Keyframes # Sampled Frames
Assembling Shelter 48 2,123 6,931

Batting Run 50 347 2,004
Making Cake 48 3,119 6,292

random 1,577 49,247 95,145
Total Development 1,723 54,836 104,019

Evaluation 1,742 51,306 108,918

Hence, in order to measure the performance of each model,
a suitable metric is the average precision (AP), which is a
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Fig. 6. Mean Average Precision retrieval performance comparison between
keyframes and temporal sampled frames analysis. For each static descriptor
we registered a significant improvement when using temporal sampling, with
Semantic Model Vectors resulting as the best descriptor in both cases.

popular ranking metric and has been used in all the editions
of the TRECVID High Level Feature extraction task. For each
category, let TP be the total number of relevant samples in
the collection (which contains a total N samples). Let TPd

be the number of relevant samples found in the top d ranked
samples returned by the system. Let Id = 1 if the dth sample
in the ranked list is relevant and 0 otherwise. The average
precision (AP) is then defined as 1

TP

∑N
d=1

TPd

d Id. The mean
of average precision scores over all target categories is defined
as the Mean Average Precision (MAP).

In the following we discuss in detail the results emerging
from the experiments.

A. Individual Descriptors Performance

First we compare the performance of event classifiers based
on individual descriptors. For all the features, a frame to
video aggregation step is performed, as explained in detail
in Section VI-B. As reported in Figure 10, performance varies
across categories, with AP scores ranging from 0.15 to 0.3 for
Assembling Shelter and Making cake, while Batting in run
ends up being easier to recognize, with AP scores ranging from
0.49 to 0.62. Some general conclusions can be drawn from
these MAP scores. Most importantly, the proposed Semantic
Model Vectors outperform all the other features in terms of
Mean Average Precision (0.392), regardless of which sampling
method is used.

From the results presented in Figure 6 emerges that for
any static descriptor, feature extraction on frames obtained by
uniform sampling provides better MAP rates than adaptive
sampling. This is probably due to the complexity of the events
and the “wild” nature of the videos, with a low number of
repetitive or static shots. Therefore uniform sampling, which
generates a significantly larger number of frames (as shown
in Table II), provides richer information to the classifiers.

Considering the large scale nature of the video event recog-
nition problem at hand, the space occupied by the feature
representation of each video is crucial. In Figure 7 are reported
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Fig. 7. Mean Average Precision vs. Video descriptor size (in kilobytes)
based on individual video descriptors. Semantic Model Vectors offer the most
compact representation as well as the best recognition performance.

the number of kilobytes (KB) necessary to represent each
video (after the feature frames to video aggregation), for each
descriptor. Semantic Model Vectors can represent an entire
video with a 280-dimensional feature vector, which is not
only the best performing single descriptor but also the most
compact one. The second best performing descriptor, the SIFT
BoW representation, occupies approximately 15 times more
space than the Semantic Model Vector representation. The
Global features, comprising multiple descriptors, occupy by
far the largest amount of kilobytes.

B. Frame to Video Aggregation

As we discussed in Section V-D, since each feature is
extracted at frame level, we must aggregate them to determine
a single score for each video. We perform an experiment
on the Semantic Model Vectors, which is the single best
performing descriptor, to determine which aggregation strategy
works best. We compare feature-level versus detector score-
level aggregation using average or max pooling.

The AP results outlined in Figure 8 clearly suggest to
use feature-level aggregation for all three categories. Hence,
we employ this early fusion strategy for all the individual
descriptors. The results reported in all other figures in this
section follow this framework.

This result corroborates the initial intuition about the com-
plexity of the events we are examining. Classification at the
granularity of a single frame, or very a short video segment, is
not sufficient to correctly recognize complex video events—
a broader context must be inspected instead. Early fusion
(or feature-level aggregation) allows each frame to contribute
to a richer and more contextualized video representation,
therefore providing a more comprehensive description and
discrimination for event recognition.

C. Dynamic Features: Global vs. Local BoW Histogram Ag-
gregation

As explained in detail in Section V-C, when considering
the bag of words approach for spatial-temporal features, there
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are different options for building the histogram of codebook
words occurrences in a video: one is to bin all interest
points descriptors into a single histogram representing the
entire video (HOG(F) Pyr0), which can be further extended
to employ a temporal pyramid matching framework to com-
pute separate histograms over temporally partitioned segments
(HOG(F) Pyr1x2 and HOG(F) Pyr1x2x2). We refer to this
strategy as Global Histogram Aggregation since all histogram
counts are accumulated globally and then normalized. The
second option is to generate a separate normalized histogram
for each spatio-temporal volume where STIPs have been
detected, and then aggregate these local segment histograms
into a video-level histogram similarly to the method described
in Section VI-B for aggregation of static frame-based features.
We call this strategy Local Histogram Aggregation, and denote
the corresponding runs as HOG and HOF. Note that all
dynamic features are video-level features, regardless of the
histogram aggregation method.

We compare the MAP performance of the above options in
Figure 9. The results show a significant performance advantage
of the Local Histogram Aggregation (HOG and HOF bars
in dark blue), obtained by averaging BoW local histograms
computed from spatio-temporal cubes centered at detected
STIP points. This result confirms the intuition expressed in
Section III that the target videos are too long and complex
to rely on global histograms accumulated over video clips of
widely varying lengths. Such representations tend to weaken
the contribution of codebook words that may be discriminative
locally but whose contribution drowns within the sea of
thousands of other (noisy) descriptors accumulated over a
long video clip. Local histogram computation and video-level
aggregation allows for locally-distinctive codewords to retain
a higher weight in the final descriptors, which in turn yields
better performance.

In order to alleviate this effect in the pyramid type rep-
resentations, one might increase their granularity by adding
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Fig. 9. Mean Average Precision retrieval performance of the HOG and
HOF descriptors: comparison between different methods to generate bags
of words video representation. In Global Histogram Aggregation all the
visual words from the whole video are binned into a single histogram (plus
temporal pyramid declinations), while in Local Histogram Aggregation one
histogram per STIP space-time volume is built first, and then all histograms
are aggregated using average pooling to form a single video-level descriptor.

further levels in the temporal pyramid. This idea has two major
limitations. The first is the size of the descriptor: already with
a pyramid of depth 2, a 7000 dimensional vector is needed
(as opposed to the fixed 1000 dimensions of the frame-to-
video aggregation used in Figure 7). The second lies in the
hierarchical weight given to higher levels in the pyramid. Finer
scale matches are weighted much more than coarse matches.
This is desirable if the consecutive, uniformly sampled video
sequences describing an event are aligned. The large variety
both in appearance and length of the inspected videos suggest
that this is not necessarily the case. This could explain why
we observe degrading performance for the HOG descriptor as
the number of levels in the pyramid increased.

D. Feature Fusion

In Section V-E, we observed the complementary nature of
the descriptors from the view point of semantics, temporal,
and spatial resolution, which suggests that fusion across these
descriptors is likely to improve performance even further.

Here we report the results obtained by late fusion methods
to combine all event detection hypotheses generated by the
different approaches. We ensured that the scores from all
approached were compatible for fusion by applying sigmoid
normalization on the non-probabilistic predictors. Fusion was
performed by averaging prediction scores. The mean average
precision (MAP) scores are reported in Figure 10.

We observe that a combination of static features (Combo-
Static, including Global, SIFT, GIST, and Semantic Model
Vectors) works better for events that can be predicted by
some iconic objects or settings (e.g., a cake for Making cake;
the baseball field and player outfits, including helmet and
bat, for Batting in run), while combining dynamic features
(ComboDynamic, including HOG, HOG Pyr1x2, HOF, and
HOF Pyr1x2 descriptors) performs better for events with more
widely varying visual appearance and temporal evolution (e.g.,
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Fig. 10. Retrieval performance of different event recognition approaches based on individual features (lighter colors) and their combinations (darker colors).
Average precision computed for each category and MAP scores over the whole 2010 TRECVID MED dataset.

Assembling shelter videos showing different stages of shelter
construction and their temporal progression).

Both combinations (or static or dynamic descriptors) boost
the Average Precision scores with respect to the individual
descriptors across all three events. The performance behavior
of static and dynamic features appears to be complementary
across event categories. Hence, we apply a hierarchical fusion
(ComboHierarchical), which combines ComboStatic and Com-
boDynamic predictions. This final fusion step further improves
the MAP rate, confirming the complementary nature of static
and dynamic features. We also perform an aggregation of all
the static and dynamic runs in a single step (ComboHorizon-
tal), and observe performance boost similar to the hierarchical
fusion method.

In all the combination cases inspected, late fusion of mul-
tiple descriptors results in a boost of MAP with respect to the
individual descriptors for all the events in the dataset, thereby
confirming the complementary nature of these features. The
best MAP performance of 0.46 is achieved by fusing all
runs, without an appreciable difference between horizontal vs.
hierarchical fusion.

VII. CONCLUSION

We have proposed a system for complex video event
recognition in unconstrained real-world consumer videos, such
as those from YouTube. Our recognition system incorporates
information from a wide range of static and dynamic visual
features. We evaluate our framework on the 2010 TRECVID
Multimedia Event Detection dataset, a fully annotated uncon-
strained video collection in terms of content complexity and
average video clip length.

In particular, we propose Semantic Model Vectors, an
intermediate level visual representation, to help bridge the
semantic gap between low-level visual features and complex

video events. We use a large number of semantic detectors
covering scenes, objects, people, and various image types. The
Semantic Model Vector representation turns out to be the best-
performing single feature in our experiments, achieving Mean
Average Precision of 0.392 on the TRECVID MED10 dataset,
while also being the most compact representation (only 280
dimensions vs. thousands of dimensions for traditional low-
level descriptors). All these properties make this semantic
representation particularly suitable for large-scale video mod-
eling, classification, and retrieval. The Semantic Model Vectors
also appear to be complementary to the other descriptors. We
experimented with different feature granularities (frame-based
vs. video-based) and fusion types (e.g., early vs. late fusion),
and observed a performance boost leading to 0.46 overall
MAP scores obtained from a late fusion of static and dynamic
features.

In the future, we plan to generalize this approach to a wider
range of video events. We also plan on learning the temporal
evolution of descriptors representing actions, people, objects,
and scenes.
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