
β

We compute b-selection, and keep a sorted cache of the top weights
Sort messages at beginning of each iteration
Sufficient selection: examine entries corresponding to greatest W and in order.
Stop looking at values after seeing b greater than bound on remaining entries:

�β

Fast b-Matching via Sufficient Selection Belief Propagation Bert Huang and Tony Jebara
bert@cs.columbia.edu, jebara@cs.columbia.edu

Computer Science Department, Columbia University

Maximum Weight Perfect b-Matching

Belief Propagation for b-Matching

References

Experiments: Synthetic DataSaving Space by Unrolling Recursion

Saving Time with Sufficient Selection

Summary

btr bte Time (min.) Belief Lookups % Full
1 6 285.77 4.5992× 1010 0.94%
4 24 306.76 5.2208× 1010 1.11%

β
W

visited, certain at top
visited, uncertain
unvisited
worst-case unvisited

argmax
A

m�

i=1

m+n�

j=m+1

AijW (xi , xj)

s.t.
m+n�

j=1

Aij = bi ,∀i , Aij = Aji ,∀(i , j)

σk(S) = s ∈ S where |{t ∈ S |t ≥ s}| = k.

σbj ({B t−1
jk |k �= i}) ∈ {σbj ({B t−1

jk |k}),σbj+1({B t−1
jk |k})}.

Given sets of node descriptors and ,
target degrees , and weight function W, compute

{x1, ... , xm} {xm+1, ... , xm+n}
{b1, ... , bm+n}

W is any function, e.g., linear kernel, or arbitrary weights, and N = m + n.

Writing b-matching objective as factorized probability distribution,
standard loopy BP is guaranteed to converge to true optimal setting
in O(N) iterations when the LP-relaxation is integral (Huang &
Jebara 2007; Sanghavi et al. 2008).
The simplified belief update rule uses the selection operation, denoted

B t
ij = W (xi , xj)− σbj ({B t−1

jk |k �= i}).

The belief update rule is

The selection operation for each update returns one of two values:

αt
j = −σbj ({B t−1

jk |k}), βt
j = −σbj+1({B t−1

jk |k}).We name these two values

B t
ij = W (xi , xj) +

�
αt

j if At
ji �= 1

βt
j otherwise.

The belief lookup rule is then

Synthetic Gaussian data: 20 dimensional, zero-mean, negative
Euclidean weights

Figure 2. Running time for 1-matching compared to
full BP and (unipartite) Blossom V (Kolmogorov 2009)

MNIST digit matching: Match each test digit to 6b training digits

Figure 3. Running time on synthetic Gaussian data
using different cache sizes (cache size is cN; c = 0 is
equivalent to previous belief propagation algorithm)

Table 1. Running time for full MNIST (60,000 x
10,000 candidate edges). Neither memory nor
running time would be bearable on a PC without the
improvements provided here.

Bert Huang, Tony Jebara

over any set S as

σk(S) = s ∈ S where |{t ∈ S|t ≥ s}| = k.

Belief propagation maintains a belief value for each
edge, which, in the dense case, is conveniently repre-
sented as a matrix B, where entry Bt

ij is the belief
value for the edge between xi and xj at iteration t.
The simplified update rule for each belief is

Bt
ij = W (xi, xj)− σbj ({Bt−1

jk |k $= i}). (1)

In the above equation and for the remainder of this
text, indices range from 1 to (m+n), unless otherwise
noted, and are omitted for cleanliness.

The key insight for reducing memory usage is that the
full beliefs never need to be stored (not even the com-
pressed messages). Instead, by unrolling one level of
recursion, all that need to be stored are the selected
beliefs, because the selection operation in Equation
(1) only weakly depends on index i. That is, the se-
lection operation is over all indices excluding i, which
means the selected value will be either the bj ’th or the
bj + 1’th greatest element,

σbj ({Bt−1
jk |k $= i}) ∈

{σbj ({Bt−1
jk |k}),σbj+1({Bt−1

jk |k})}.

Thus, once each row of the belief matrix B is updated,
these two selected values can be computed and stored,
and the rest of the row can be deleted from memory.
Any further reference to B is therefore abstract, as
it will never be fully stored. Any entry of the belief
matrix can be computed in an online manner from the
stored selected value. Let αj be the negation of the
bj ’th selection and βj be that of the bj+1’th selection.
Then the update rules for these parameters are

αt
j = −σbj ({Bt−1

jk |k}), βt
j = −σbj+1({Bt−1

jk |k}), (2)

and the resulting belief lookup rule is

Bt
ij = W (xi, xj) +

{
αt
j if At

ji = 1

βt
j otherwise.

(3)

After each iteration, the current estimate of A is

At
ij =

{
1 if Bt−1

ij ≥ αt
i

0 otherwise,

which is computed when the α and β values are up-
dated in Equation (2). When this estimate is a valid
b-matching, i.e., when the columns of Aij sum to their
target degrees, the algorithm has converged to the so-
lution. The algorithm can be viewed as simply com-
puting each row of the belief matrix and performing
the selections on that row and is summarized in Algo-
rithm 1.

Algorithm 1 Belief Propagation for b-Matching.
Computes the adjacency matrix of the maximum
weight b-matching.

1: α0
j ,β

0
j ← 0, ∀j

2: A0 ← [0]
3: t ← 1
4: while not converged do
5: for all j ∈ {1, . . . ,m+ n} do
6: At

jk ← 0, ∀k
7: αt

j ← σbj ({Bt−1
jk |k}) {Algorithm 2}

8: βt
j ← σbj+1({Bt−1

jk |k})
9: for all {k|Bt−1

jk ≥ αt
j} do

10: At
jk ← 1

11: end for
12: end for
13: delete At−1, αt−1 and βt−1 from memory
14: t ← t+ 1
15: end while

2.3 Sufficient Selection

This section describes the running time enhancement
in the proposed algorithm, which is a variation of
the faster belief propagation algorithm proposed by
McAuley and Caetano (2010). The enhancements aim
to reduce the running time of each iteration by ex-
ploiting the nature of the quantities being selected. In
particular, the key observation is that each belief is a
sum of two quantities: a weight and an α or β value.
These quantities can be sorted in advance, outside of
the inner (row-wise) loop of the algorithm, and the se-
lection operation can be performed without searching
over the entire row, significantly reducing the amount
of work necessary. This is done by testing a stopping
criterion that guarantees no further belief lookups are
necessary.

Some minor difficulties arise, however, when sorting
each component, so the algorithm by McAuley and
Caetano (2010) does not directly apply as-is. First,
the weights cannot always be fully sorted. In general,
storing full order information for each weight between
all pairs of nodes requires quadratic space, which is im-
possible with larger data sets. Thus, the proposed al-
gorithm instead stores a cache of the heaviest weights
for each node. In some special cases, such as when
the weights are a function of Euclidean distance, data
structures such as kd-trees can be used to implicitly
store the sorted weights. This construction can pro-
vide one possible variant to our main algorithm.

Second, the α-β values require careful sorting, because
the true belief updates mostly include αt terms but a
few βt terms. Specifically, the indices that index the
greatest bj elements of the row should use βt. One way

Fast b-Matching via Sufficient Selection Belief Propagation

to handle this technicality is to first compute the sort-
order of the αt terms and, on each row, correct the
ordering using a binary search-like strategy for each
index in the selected indices. This method is techni-
cally a logarithmic time procedure, but requires some
extra indexing logic that creates undesirable constant
time penalties. Another approach, which is much sim-
pler to implement and does not require extra indexing
logic, is to use the sort-order of the βt’s and adjust
the stopping criterion to account for the possibility of
unseen αt values.

Since the weights do not change during belief propa-
gation, at initialization, the algorithm computes index
cache I ∈ N(m+n)×c of cache size c, which is a param-
eter set by the user, where entry Iik is the index of
the k’th largest weight connected to node xi and, for
u = Iik,

W (xi, xu) = σk({W (xi, xj)|j}).

At the end of each iteration, the βt values are similarly
sorted and stored in index vector e ∈ Nm+n, where,
for v = ek, entry βt

v = σk(βt
j |j}).

The selection operation from (2) is then computed by
checking the beliefs corresponding to the sorted weight
and β indices. At each step, maintain a set S of the
greatest bj + 1 beliefs seen so far. These provide tight
lower bounds on the true α− β values. At each stage
of this procedure, the current estimates for αt

j and βt
j

are

α̃t
j ← σbj (S), and β̃t

j ← min(S).

Incrementally scan the beliefs for both index lists (I)j
and e, computing for incrementing index k, BiIik and
Biek . Each of these computed beliefs is compared to
the beliefs in set S and if any member of S is less
than the new belief, the new belief replaces the mini-
mum value in S.1). This maintains S as the set of the
greatest bj + 1 elements seen so far.

At each stage, we bound the greatest possible unseen
belief as the sum of the least weight seen so far from the
sorted weight cache and the least β value so far from
the β cache. Once the estimate β̃t

j is less than or equal
to this sum, the algorithm can exit because further
comparisons are unnecessary. Algorithm 2 summarizes
the sufficient selection procedure.

1A small hash table for the indices will indicate whether
an index has been previously visited in O(1) time per
lookup. For small values of bj where (bj << n + m), a
linear scan through S to find the minimum is sufficiently
fast, but a priority queue can be used to achieve sub-linear
time insertion and replacement when bj is large.

Algorithm 2 Sufficient Selection. Given sort-order of
βt values and partial sort-order of weights, selects the
bj ’th and bj + 1’th greatest beliefs of row j.

1: k ← 1
2: bound ← ∞
3: S ← ∅
4: α̃j

t ← −∞
5: β̃j

t ← −∞
6: while β̃j

t
< bound do

7: if k ≤ c then
8: u ← Ijk
9: if (u is unvisited and (Bt−1

ju > min(S)) then

10: S ← (S \min(S)) ∪Bt−1
ju

11: end if
12: end if
13: v ← ek
14: if (v is unvisited and (Bt−1

jv > min(S)) then

15: S ← (S \min(S)) ∪Bt−1
jv

16: end if
17: bound ← W (xj , xu) + βt−1

v

18: α̃t
j ← σbj (S)

19: β̃t
j ← σbj+1(S)

20: k ← k + 1
21: end while
22: αt

j ← α̃t
j

23: βt
j ← β̃t

j

2.4 Implementation Details

The implementation of Algorithms 1 and 2 used in
the experiments of Section 3 is in C. To perform the
initial iteration, during which the weight cache is con-
structed, our program uses the Quick Select algorithm,
which features the same pivot-based partitioning strat-
egy as Quick Sort to perform selection in (average case)
O(N) time per node (Cormen et al., 2001). For low-
dimensional data and distance-based weights, we can
run the same selection using a kd-tree and provide the
index cache as an input to the program. 2

2.5 Analysis

In this section, we analyze the correctness, space and
running time requirements of the proposed algorithm.
First, we verify that the bound from the sufficient se-
lection procedure holds even though it is computed
using only the βt

j values, when many of the beliefs are
actually computed using αt

j values.

Claim 1. At each stage of the scan, where set S con-
tains the bj + 1 greatest beliefs corresponding to the
first through k’th indices of (I)j and e, the following

2A newer C++ version of the solver is available at
http://www.cs.columbia.edu/~bert/code/bmatching/.

Space: . We unroll recursion, and characterize beliefs
with two vectors instead of matrix.

Time: . We compute message updates via sufficient
selection, based on faster BP by McAuley & Caetano (2010).

N × 1 N × N

Maximum weight perfect b-matching (b-matching) is useful for resource
allocation, semi-supervised learning, spectral clustering, graph
embedding, and manifold learning.

Posing b-matching as probabilistic inference yields a lightweight belief
propagation (BP) solver: O() time and O() space for a dense graph
of N nodes (Huang & Jebara 2007).

We provide two speedups that significantly improve the scalability of BP
for b-matching.

N3 N2

BP stores matrix of beliefs: O() additional space.

Using classical selection algorithms, each row takes O(N) to
update, O() per iteration, O() total work until convergence.

N2N × N

N2 N3

The , beliefs and the current
estimate for A can be computed by
looking at one row at a time, and the full B
matrix need never be stored in memory.

�α �β

Each belief row is an element-wise sum of two vectors and or W (xi , ·) �α �β

McAuley & Caetano (2010) exploited similar structure by pre-sorting each vector,
computing maximization in expected O() time

√
N

Figure 1. Visualization of sufficient selection. Selecting W + , we
can stop once b points are green. Red points are unvisited, and in
the worst case are located at the gray dot.

β

Theorem 1. Considering the element-wise sum of two real-valued vectors of
length N with independently random sort orders, the expected number of
elements that must be compared to compute the selection of the b'th greatest
entry is σb({wi + βi |i}) O(

√
bN).

Experiments: MNIST Digits

Figure 4. Running times for matching subsampled
MNIST data using different cache sizes.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

n+m

(s
ec

on
ds

 p
er

 it
er

at
io

n)
(1

/2
) Averaged over 150 runs per size

0 500 1000 1500 2000 2500 3000
0

1000

2000

3000

n+m

(b
el

ie
f l

oo
ku

ps
 p

er
 it

er
at

io
n)

(1
/2

)

Averaged over 150 runs per size

c = 0.00
c = 0.05 (m+n)
c = 0.15 (m+n)
c = 1.00 (m+n)

c = 0.00
c = 0.05 (m+n)
c = 0.15 (m+n)
c = 1.00 (m+n)

0 200 400 600 800 1000 1200
0

20

40

60

80

100

Cache Size

Ti
m

e
(m

in
ut

es
)

btr = 1, bte = 6

btr = 2, bte = 12

btr = 3, bte = 18

btr = 4, bte = 24

btr = 5, bte = 30

0 200 400 600 800 1000
0

10

20

30

n+m

tim
e

(s
ec

on
ds

)

Averaged over 1300 runs per size

Sufficient BP
Full BP
BlossomV

B. Huang and T. Jebara. Loopy belief propagation for bipartite
maximum weight b-matching. AISTATS 2007

V. Kolmogorov. Blossom v: a new implementation of a minimum
cost perfect matching algorithm. Math. Programming Comp. 2009

J. McAuley and T. Caetano. Exploiting data-independence for fast
belief-propagation. ICML 2010

S. Sanghavi, D. Maliotov, A. Willsky. Linear programming analysis of
loopy belief propagation for weighted matching. NIPS 2007

greatest unseen entry (least W so far) + (least so far)≤ β

Acknowledgements/Notes
This work was supported by DHS Contract N66001-09-C-0080–“Privacy
Preserving Sharing of Network Trace Data (PPSNTD) Program”

Thanks to T. Caetano and B. Shaw for helpful discussions.

Code is available at http://www.cs.columbia.edu/~bert/code/bmatching/

Bert is graduating this summer. Contact him with
employment and collaboration opportunities:
bert@cs.columbia.edu, http://berthuang.com




B t

11 ... B t
1N

...
. . .

...
B t

N1 ... B t
NN





O(N2) → O(N).

O(N3) → O(N2.5).

