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Abstract

While most popular collaborative filter-
ing methods use low-rank matrix factoriza-
tion and parametric density assumptions,
this article proposes an approach based on
distribution-free concentration inequalities.
Using agnostic hierarchical sampling assump-
tions, functions of observed ratings are prov-
ably close to their expectations over query
ratings, on average. A joint probability
distribution over queries of interest is esti-
mated using maximum entropy regulariza-
tion. The distribution resides in a convex hull
of allowable candidate distributions which
satisfy concentration inequalities that stem
from the sampling assumptions. The method
accurately estimates rating distributions on
synthetic and real data and is competitive
with low rank and parametric methods which
make more aggressive assumptions about the
problem.

1 INTRODUCTION

This article proposes a novel approach to the collab-
orative filtering problem by exploiting the concentra-
tion of user and item statistics. By making a relatively
agnostic assumption that users and items are drawn
independently and identically-distributed (iid), it can
be shown that the statistics of training ratings must
concentrate close to the expectations of correspond-
ing query ratings. Such assumptions are weaker than
those used in previous approaches which often assume
a parametric form on the generative model or assume
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that the rating matrix is low-rank. Nevertheless, an
otherwise indifferent probability estimate that obeys
such bounds (for instance the maximum entropy esti-
mate) provides state-of-the-art performance.

The method described herein is largely complemen-
tary with current approaches since these leverage dif-
ferent intuitions, such as specific parametric forms for
the distributions involved and low-rank constraints on
the rating matrix. For instance, the assumption that
the ratings matrix is low rank underlies many singu-
lar value decomposition (SVD) techniques. Therein,
users and items are assumed to be iid, and ratings are
assumed to be randomly revealed such that there is
no bias between training and testing statistics. These
assumptions already have been shown to be unreal-
istic (Marlin et al., 2007), however empirical perfor-
mance remains promising. The SVD approach fur-
ther assumes that the ratings are sampled from dis-
tributions parametrized by the inner products of low-
dimensional descriptor vectors for each user and each
item. In other words, the full rating matrix is assumed
to be the product of a user population matrix and an
item population matrix, possibly with additional in-
dependent noise. Often, such matrices are estimated
with some form of regularization, either by truncat-
ing their rank, by penalizing their Frobenius norm or
by placing Gaussian priors (a parametric assumption)
on their descriptor vectors (Breese et al., 1998; Lim &
Teh, 2007; Montanari et al., 2009; Rennie & Srebro,
2005; Salakhutdinov & Mnih, 2008b; Salakhutdinov &
Mnih, 2008a; Srebro et al., 2005; Weimer et al., 2007).

Conversely, the approach in this article only makes
minimal hierarchical sampling assumptions. It as-
sumes that users and items are sampled iid and that
each rating is subsequently sampled independently
from a conditional probability distribution that de-
pends on the respective user-item pair in an arbitrary
manner. It is also assumed that the ratings are re-
vealed randomly. The resulting learning algorithm
makes no further assumptions about the distributions
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or the interaction between items and users (such as
the inner product assumption most low-rank matrix-
factorization methods make). Subsequently, we prove
that, as long as each rating distribution depends only
on the user and item involved, statistics from a user’s
(or item’s) training data concentrate around the ex-
pected averages of the query probabilities. The result
is a concentration inequality which holds regardless of
modeling assumptions. The combination of these con-
centration inequalities defines a convex hull of allow-
able distributions. With high probability, the desired
solution lives within this set but is otherwise under-
determined. A reasonable way to select a particular
member of this set is to identify the one that achieves
maximum entropy (or minimum relative entropy to a
prior). The maximum entropy criterion is merely used
as an agnostic regularizer to handle the underdeter-
mined estimation problem and ensure the uniqueness
of the recovered estimate within the convex hull.

Since the dependencies in the rating process exhibit a
hierarchical structure, the method proposed is reminis-
cent of the hierarchical maximum entropy framework
(Dud́ık et al., 2007). In fact, the proposed algorithm
can be viewed as a specific application of hierarchi-
cal maximum entropy where we estimate distributions
linked by common parents (from which we have no
samples) using statistics gathered from separate distri-
butions with one sample each. Thus, the collaborative
filtering setting is an extreme case of the hierarchical
maximum entropy setup since, without the hierarchy,
there would be no information about certain compo-
nents of the probability model. Moreover, previous
work (Dud́ık et al., 2007) proposed tree-structured hi-
erarchies while this article explores a grid-structured
(non-tree) hierarchy due to the matrix setup of users
and items in the collaborative filtering problem.

We emphasize that the proposed intuitions and con-
centration inequalities herein complement previous
parametric approaches and provide additional struc-
ture to the collaborative filtering problem. They may
be used in conjunction with other assumptions such
as low-rank matrix constraints. Similarly, the concen-
tration bounds hold whether the data is generated by
a distribution with known parametric form or by any
arbitrary distribution.

2 ALGORITHM DESCRIPTION

Consider the collaborative filtering problem where the
input is a partially observed rating matrix X ∈ Z

M×N .
Each matrix element xij ∈ {1, . . . , K} is a random
variable representing the rating provided by the i’th
user for the j’th item where i ∈ {1, . . . , M} and
j ∈ {1, . . . , N}. The users {u1, . . . , uM} and the
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Figure 1: Graphical Model of Sampling Assumptions.
We solve for the probabilities of the query ratings with-
out explicitly estimating the user and item descriptors.

items {v1, . . . , vN} are variables drawn iid from ar-
bitrary sample spaces ui ∈ Ωu and vj ∈ Ωv, respec-
tively. The observed ratings (where a sample of the
random variable is provided) will be treated as a train-
ing set for the collaborative filtering problem and used
to estimate unobserved ratings (where no sample of
the random variable is available). The desired out-
put is a set of predicted probability distributions on
certain query ratings whose indices are specified a pri-
ori. Let T be the set of observed training (i, j) in-
dices and let Q be the set of query indices. Given
{xij |(i, j) ∈ T } and Q, we wish to estimate the prob-
abilities {p(xij |ui, vj)|(i, j) ∈ Q}.

2.1 Assumptions

A major challenge in the sampling setting of col-
laborative filtering is that only a single sample
rating1 is observed from the training distributions
{p(xij |ui, vj)|(i, j) ∈ T } and zero samples are observed
from the query distributions {p(xij |ui, vj)|(i, j) ∈ Q}.
To transfer information from training samples to the
query distributions, it will be helpful to make a hi-
erarchical sampling assumption. Figure 1 depicts a
graphical model representation of the proposed struc-
ture that will be used. First, users are drawn iid from
an unknown distribution p(u) and items are drawn
iid from another unknown distribution p(v). Subse-
quently, for some pairs of users and items, a rating is
drawn independently with dependence on the corre-
sponding item and user samples (the rating’s parents
in the graphical model).

It is natural to require that the ratings are samples
from multinomial distributions over a range of rat-

1Recommendation data sets may include multiple rat-
ings per user-item pair, though these are rare in practice.
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ing values. In most collaborative filtering data sets
(e.g., the Movielens data sets), ratings are discrete in-
teger values (e.g., 1 to 5), so the multinomial is non-
restrictive. We further assume that the multinomial
distributions are conditioned on a latent user descrip-
tor variable ui ∈ Ωu and a latent item descriptor vari-
able vj ∈ Ωv for each query xij ∈ {1, . . . , K}. In
other words, we assume rating samples are drawn from
p(xij |ui, vj) = g(xij , ui, vj), where g provides an arbi-
trary mapping of the user and item descriptor vari-
ables to a valid multinomial distribution in the proba-
bility simplex. This is in contrast to standard (SVD)
assumptions, which require that the function is con-
strained to be g(xij , u

⊤
i vj), where the function g may

be constrained parametrically and must depend solely
on the inner product of low-dimensional vector descrip-
tors in a Euclidean space.

Ratings xij for different users and items in this formu-
lation are not identically distributed, not even for any
particular user or item. The distribution p(xij |ui, vj)
for user i for an item j can be dramatically different
from p(xik|ui, vk), user i’s rating distribution for an-
other item k 6= j. However, the sampling structure
in Figure 1 allows the transfer of information across
many distributions since users (and items) are sampled
iid from a common distribution p(u) (and p(v)). The
joint probability distribution implied by the figure fac-
torizes as

∏

ij p(xij |ui, vj)p(ui)p(vj) and, in particular,
we are interested in recovering

∏

(i,j)∈Q p(xij |ui, vj).

The aforementioned sampling assumptions will estab-
lish that the empirical average of any function of the
ratings generated by a single user (or item) is close
to its expectation with high probability. More specif-
ically, empirical averages over training samples are
close to corresponding averages over the expected val-
ues of the query distributions.

2.2 Concentration Bound

In this section, we present a theorem proving the con-
centration of training statistics to expected query av-
erages. Specifically, we consider bounded scalar func-
tions fk(x) 7→ [0, 1] that take ratings as input and
output a value inclusively between 0 and 1. Examples
of such functions include the normalized rating itself
(e.g., (x−1)/(K−1), for ratings from 1 to K), or indi-
cator functions for each possible value (e.g., I(x = 1)).

We will consider bounding the difference of two quan-
tities. The first quantity is the empirical average of
function fk(x) over the training ratings. Since this
quantity is fixed throughout learning, we simplify no-
tation by using µik to denote this average of function
fk(x) for user i’s ratings, and using νjk to denote the
average for item j’s ratings. Let mi be the number of

training ratings for user i and let nj be the number of
training ratings for item j. These averages are then

µik =
1

mi

∑

j|(i,j)∈T

fk(xij), νjk =
1

nj

∑

i|(i,j)∈T

fk(xij). (1)

The second quantity of interest is the expected aver-
age of fk(x) evaluated on the query ratings. Let m̂i

be the number of query ratings for user i and n̂j be
the number of query ratings for item j. The expected
averages are then expressed as

1

m̂i

∑

j|(i,j)∈Q

Ep(xij |ui,vj)[fk(xij)],

1

n̂j

∑

i|(i,j)∈Q

Ep(xij |ui,vj)[fk(xij)]. (2)

The following theorem bounds the differences between
the quantities in Equation (1) and Equation (2).

Theorem 1. For the ratings of user i, the difference

ǫik =
1

mi

∑

j|(i,j)∈T

fk(xij)

−
1

m̂i

∑

j|(i,j)∈Q

Ep(xij |ui,vj)[fk(xij)] (3)

between the average of fk(x) 7→ [0, 1] over the observed
ratings and the average of the expected value of fk(x)
over the query ratings is bounded above by

ǫik ≤

√

ln 2
δ

2mi

+

√

(mi + m̂i) ln 2
δ

2mim̂i

(4)

with probability 1 − δ.

The proof is deferred to Appendix A. The same dif-
ference is also bounded by the following corollary.

Corollary 2. The difference ǫik defined in Equation
(3) is bounded below by

ǫik ≥ −

√

ln 2
δ

2mi

−

√

(mi + m̂i) ln 2
δ

2mim̂i

(5)

with probability 1 − δ.

Since Theorem 1 holds for any bounded function, ap-
plying the result for function 1−fk(x) proves the corol-
lary. Moreover, the same bounds hold for item ratings
as summarized by the following corollary.

Corollary 3. For the ratings of item j, the difference
between the average of fk(x) 7→ [0, 1] over the observed
ratings and the average of the expected value of fk(x)
over the query ratings is bounded above and below with
high probability.
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The proof follows by replacing all references to users
with references to items and vice versa. This pro-
duces concentration bounds that are similar to those
in Equations (4) and (5).

Not only does Theorem 1 provide assurance that
we should predict distributions with similar averages
across training and query entries of X , the dependence
of the bounds on the number of training and query
samples adaptively determine how much deviation can
be allowed between these averages. Due to the lin-
earity of the expectation operator, each bound above
produces a linear inequality or half-space constraint on
p(xij |ui, vj). The conjunction of all such half-spaces
forms a convex hull ∆ of allowable choices for the
distribution

∏

(i,j)∈Q p(xij |ui, vj). These bounds hold
without parametric assumptions about the conditional
probabilities p(xij |ui, vj) generating the ratings. They
also make no parametric assumptions about the dis-
tributions p(u) and p(v) generating the users and the
items. The δ confidence value adjusts all the deviation
inequalities and can be used as a regularization param-
eter. A small value of δ effectively relaxes the convex
hull of inequalities while a large value of δ permits less
deviation and shrinks the hull. Thus, δ controls all
deviation inequalities which also individually depend
on the cardinality of their training and query ratings.

2.3 Maximum Entropy

To choose from the candidate distributions p ∈ ∆ that
fit the constraints derived in the previous section (and
reside inside the prescribed convex hull), we apply the
maximum entropy method. The solution distribution
p recovered will be of the form

∏

(i,j)∈Q p(xij |ui, vj).
We choose the distribution that contains the least in-
formation subject to the deviation constraints from
the training data. Alternatively, we can minimize rel-
ative entropy to a prior p0 subject to the constraints
defined by the deviation bounds. This is a strictly
more general approach since, when p0 is uniform, min-
imum relative entropy coincides with standard maxi-
mum entropy. We suggest using a single identical max-
imum likelihood multinomial distribution over all rat-
ings independent of user and item for the prior, namely
∏

(i,j)∈Q p0(xij). Hence, we use the terms maximum
entropy and minimum relative entropy interchange-
ably.

Assume we are given a set of functions F where fk ∈ F
and k ∈ {1, . . . , |F |}. Let αi be the maximum devia-
tion allowed for each function’s average expected value
for i. Let βj be the maximum deviation allowed for
each function’s average expected value for item j. The
α and β ranges are set according to Theorem 1 and its

corollaries. For some δ, the allowed deviations are

αi =

√

ln 2
δ

2mi

+

√

(mi + m̂i) ln 2
δ

2mim̂i

βj =

√

ln 2
δ

2nj

+

√

(nj + n̂j) ln 2
δ

2njn̂j

.

These scalars summarize the convex hull ∆ of distribu-
tions that are structured according to the prescribed
sampling hierarchy.

The primal maximum entropy problem is

max
p

∑

ij∈Q

H(pij(xij)) +
∑

ij∈Q,xij

pij(xij) ln p0(xij)

s.t.

∣

∣

∣

∣

∣

∣

1

m̂i

∑

j|ij∈Q

∑

xij

pij(xij)fk(xij) − µik

∣

∣

∣

∣

∣

∣

≤ αi, ∀i, k

∣

∣

∣

∣

∣

∣

1

n̂j

∑

i|ij∈Q

∑

xij

pij(xij)fk(xij) − νjk

∣

∣

∣

∣

∣

∣

≤ βj , ∀j, k.

In the above, pij(xij) is used as shorthand for the con-
ditional probabilities p(xij |ui, vj) for space reasons. In
practice, the dual form of the problem is solved. This
is advantageous because the number of queries is typ-
ically O(MN), for M users and N items, whereas the
number of constraints is O(M + N). Moreover, only a
sparse set of the constraints is typically active. Since
the primal problem is more intuitive, the details of the
dual formulation are deferred to Appendix B. Given a
choice of the feature functions F , a setting of δ and a
set of observations, it is now straightforward to solve
the above maximum entropy problem and obtain a so-
lution distribution

∏

(i,j)∈Q p(xij |ui, vj).

2.3.1 Feature Functions

This subsection specifies some possible choices for the
set of feature functions F . These are provided only
for illustrative purposes since many other choices are
possible as long as the functions have [0, 1] range. For
discrete ratings {1, . . . , K}, a plausible choice of F is
the set of all possible conjunctions over the K set-
tings. For example, the set of all singleton indicator
functions and the set of pairwise conjunctions encodes
a reasonable set of features when K is small:

fi(x) = I(x = i), i ∈ {1, . . . , K},
fi,j(x) = I(x = i ∨ x = j), (i, j) ∈ {1, . . . , K}2.

These are used to populate the set F as well as the
linear and quadratic transformation functions f(x) =
(x − 1)/(K − 1) and f(x) = (x − 1)2/(K − 1)2. Each
of these functions is bounded by [0, 1]. It is thus possi-
ble to directly apply Theorem 1 and produce the con-
straints for the maximum entropy problem.
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3 EXPERIMENTS

This section compares the maximum entropy (Max-
ent) method against other approaches for both syn-
thetic and real data sets. A popular contender method
is Fast Max-Margin Matrix Factorization (fMMMF)
(Srebro et al., 2005) which factorizes the rating ma-
trix subject to a low trace-norm prior. One variant
of MMMF uses logistic loss to penalize training rat-
ing errors, which provides a smooth approximation of
hinge-loss. The cost function for Fast MMMF with
all-threshold logistic loss is as follows (Rennie, 2007):

||U ||2F + ||V ||2F + C
∑

r,(i,j)∈T

ln
(

1 + esgn(xij−r)(θir−u⊤

i vj)
)

.

The sgn function outputs +1 when the input is posi-
tive and −1 otherwise. Consider a probabilistic inter-
pretation of fMMMF where the above cost function is
viewed as a log-loss associated with the likelihood

p(X, U, V |θ) =
∏

(i,j)∈T

p(xij |ui, vj , θ)
∏

i

p(ui)
∏

j

p(vj).

The priors p(ui) and p(vj) on the user and item de-
scriptors are zero-mean, spherical Gaussians scaled by
1
C

and the conditional rating probability is defined by

p(xij |ui, vj , θ) ∝
∏

r

1

1 + e(sgn(xij−r)(θir−u⊤

i
vj))

. (6)

The above allows direct comparison of log-likelihood
performance of distributions estimated via Equation
(6) versus the proposed maximum entropy method.
The logistic-loss Fast MMMF method is evaluated us-
ing the author’s publicly available code (Rennie, 2007).

Two additional comparison methods were considered:
the Probabilistic Matrix Factorization (PMF) tech-
nique (Salakhutdinov & Mnih, 2008b) and its Bayesian
extension (Salakhutdinov & Mnih, 2008a). Both meth-
ods learn the parameters of the graphical model struc-
ture in Figure 1. However, each makes parametric as-
sumptions: Gaussian observation noise and Gaussian
priors on the user and item descriptors. PMF per-
forms maximum a posteriori (MAP) estimation on the
model and Bayesian PMF uses Gibbs sampling to sim-
ulate integration over the Gaussian priors. Since PMF
only estimates Gaussian means, the noise parameters
can be set subsequently by choosing the value that
produces the highest likelihood.

Finally, for experiments with real data, we also com-
pare against the likelihoods using simple estimators
such as a uniform distribution over all ratings or an
identical maximum likelihood estimate p0(xij) for all
query ratings.

Table 1: Average Likelihood and Divergence Results
for Synthetic Data. Values are averages over 10 folds
and statistically significant improvements (according
to a two-sample t-test) are displayed in bold. Higher
log-likelihood and lower KL-divergence are better.

fMMMF Maxent
Log-Likelihood −39690± 214 −35732± 216

KL-divergence 11254± 315 4954± 154

3.1 Synthetic experiments

One drawback of real data experiments is that ground
truth rating distributions are not given, only samples
from these are available. Therefore, consider a syn-
thetic scenario where the exact rating distributions are
specified and used to generate samples to populate the
rating matrix.

First, 500 users and 500 items were sampled from a
uniform probability density such that ui, vj ∈ [0, 1]5.
The rating distribution is then a multinomial with
entries proportional to the element-wise product of
the corresponding user-item pair: p(xij = r|ui, vj) ∝
ui(r)vj(r). Subsequently, a random subset T of train-
ing ratings was formed by drawing one sample from
20% of the entries of the rating matrix. These ob-
served rating samples were provided to both fMMMF
and Maxent. For both algorithms, 10% of the train-
ing set was used for cross-validation. The appropriate
scalar regularization parameter (C or δ) was chosen by
maximizing likelihood on this validation set.

A random subset Q of testing ratings was then formed
by drawing one sample from 20% of the entries of
the rating matrix (these entries were disjoint from the
training entries). The out-of-sample test likelihood
was then computed over Q. This setting is similar to a
typical testing procedure with real data. Higher like-
lihood scores indicate a better estimate of the rating
distribution however each rating distribution is only
sampled once. Therefore, we also report the Kullback-
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Figure 2: Average Log Likelihoods for each Algorithm
on Movielens Data. The log-likelihoods are plotted
against the regularization or confidence parameter δ
in the maximum entropy method.
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Leibler (KL) divergence between the true query multi-
nomials and the estimated distributions p(xij |ui, vj).
The above experiment is repeated ten times and aver-
age results are reported across the trials. The maxi-
mum entropy method obtains higher likelihood scores
as well as lower divergence from the true distribution
than the fMMMF method. The advantages are sta-
tistically significant under both performance metrics.
Table 1 summarizes the synthetic experiments.

3.2 Movie Ratings

This section compares several algorithms on the the
popular Movielens data set. This data set is a collec-
tion of over one million ratings from over six thousand
users for over three thousand movies. The ratings are
integers ranging from 1 to 5. We randomly split the
ratings in half to define the training and query user-
item pairs. To choose regularization parameters, 20%
of the training ratings were held out as a validation
set. Finally, we test the resulting likelihoods on the
query ratings.

On three random splits of training/validation/testing
sets, the log-likelihood of the testing ratings was ob-
tained for several methods. The maximum entropy
method obtains the highest test likelihood, which im-
proves over 20% more than the improvement obtained
by the leading contender method relative to the naive
p0(x) prior. Figure 2 illustrates the average likelihood
for various regularization parameter settings compared
to the competing methods. Our likelihood improve-
ment is statistically significant according to a two-
sample t-test with the rejection threshold below 1e−5.
Log-likelihoods of each method are listed in Table 2.

We also compare ℓ2 error on the ratings. This is done
by recovering point-estimates for the ratings by taking
the expected value of the rating distributions. Com-
paring against other maximum-likelihood methods like
fMMMF and PMF, Maxent obtains slightly higher ac-
curacy. All three methods are surpassed by the per-
formance of Bayesian PMF, however. Interestingly,
simply averaging the predictions of fMMMF and Max-
ent or the predictions of PMF and Maxent produces
more accurate predictions than either algorithm alone.
This suggests that the methods are complementary
and address different aspects of the collaborative fil-
tering problem. The ℓ2 errors are listed in Table 3.

4 DISCUSSION

A method for collaborative filtering was provided that
exploits concentration guarantees for functions of rat-
ings. The method makes minimal assumptions about
the sampling structure while otherwise remaining ag-

nostic about the parametric form of the generative
model. By assuming that users and items are sampled
iid, general concentration inequalities on feature func-
tions of the ratings were obtained. A solution proba-
bility distribution constrained by these concentration
inequalities was obtained via the maximum entropy
criterion. This method produced state-of-the-art per-
formance by exploiting different intuitions and sim-
pler assumptions than leading contenders. Further-
more, the proposed method is complementary with
the assumptions in other approaches. Simply exploit-
ing concentration constraints produces strong collabo-
rative filtering results and more sophisticated models
may also benefit from such bounds.

Acknowledgments

The authors thank J. Rennie, R. Salakhutdinov, and
the anonymous reviewers and acknowledge support
from the NetTrailMix Google Research Award.

References

Breese, J., Heckerman, D., & Kadie, C. (1998). Empirical
analysis of predictive algorithms for collaborative filter-
ing. Proceedings of UAI 1998.

Dud́ık, M., Blei, D., & Schapire, R. (2007). Hierarchical
maximum entropy density estimation. Proceedings of the
ICML 2007 (pp. 249–256). Omnipress.

Huang, B., & Jebara, T. (2009). Exact graph structure
estimation with degree priors. Proceedings of ICMLA.

Lim, Y. J., & Teh, Y. W. (2007). Variational bayesian ap-
proach to movie rating prediction. Proceedings of KDD
Cup and Workshop.

Marlin, B., Zemel, R., Roweis, S., & Slaney, M. (2007).
Collaborative filtering and the missing at random as-
sumption. Proceedings of UAI 2007.

McDiarmid, C. (1989). On the method of bounded differ-
ences. Surveys in Combinatorics, 148–188.

Montanari, A., Keshavan, R., & Oh, S. (2009). Matrix
completion from a few entries. Proceedings of ISIT 2009.

Rennie, J. (2007). Extracting information from informal
communication. Doctoral dissertation, MIT.

Rennie, J., & Srebro, N. (2005). Fast maximum margin
matrix factorization for collaborative prediction. Pro-
ceedings of ICML 2005 (pp. 713–719).

Salakhutdinov, R., & Mnih, A. (2008a). Bayesian proba-
bilistic matrix factorization using Markov chain Monte
Carlo. Proceedings of ICML 2008.

Salakhutdinov, R., & Mnih, A. (2008b). Probabilistic ma-
trix factorization. Advances in Neural Information Pro-
cessing Systems.

Srebro, N., Rennie, J., & Jaakkola, T. (2005). Maximum-
margin matrix factorization. Advances in Neural Infor-
mation Processing Systems 17.



Bert Huang, Tony Jebara

Table 2: Query Rating Log-Likelihoods on Movielens Data. The Maxent method has statistically significantly
higher average likelihood over the three trials according to a two-sample t-test with p value of as little as 1e− 5.
We convert the threshold model of fMMMF to a distribution for this comparison.

Uniform Prior fMMMF Distrib. PMF Maxent
Split 1 -8.0489e+05 -7.2800e+05 -6.6907e+05 -6.3904e+05 -6.1952e+05
Split 2 -8.0489e+05 -7.2796e+05 -6.6859e+05 -6.3936e+05 -6.1977e+05
Split 3 -8.0489e+05 -7.2809e+05 -6.6819e+05 -6.3987e+05 -6.1931e+05
Average -8.0489e+05 -7.2802e+05 -6.6862e+05 -6.3942e+05 -6.1953e+05

Table 3: Root Mean Square or ℓ2 Performance of Various Algorithms. Maxent gives the least error among the
MAP methods (fMMMF, PMF and Maxent) but Bayesian PMF outperforms all methods. Combining Maxent
with other MAP methods improves accuracy.

fMMMF PMF Maxent BPMF Maxent+fMMMF Maxent+PMF
Split 1 0.9585 0.9166 0.9168 0.8717 0.9079 0.8963
Split 2 0.9559 0.9175 0.9162 0.8710 0.9052 0.8965
Split 3 0.9583 0.9186 0.9166 0.8723 0.9065 0.8973
Average 0.9575 0.9176 0.9165 0.8717 0.9065 0.8967

Weimer, M., Karatzoglou, A., Le, Q., & Smola, A. (2007).
COFI RANK - maximum margin matrix factorization
for collaborative ranking. Advances in Neural Informa-
tion Processing Systems 20.

Zhu, C., Byrd, R. H., Lu, P., & Nocedal, J. (1997). Algo-
rithm 78: L-BFGS-B: Fortran subroutines for large-scale
bound constrained optimization. ACM Transactions on
Mathematical Software, 23, 550–560.

A Concentration Proof

Proof of Theorem 1. The main intuition is that the
total deviation between the expected query average
and training average is composed of (1) the devia-
tion between the training average and the expected
training average and (2) the deviation between the ex-
pected training average and the expected query av-
erage. Since each component involves independent
(though not necessarily iid) variables, McDiarmid’s in-
equality (McDiarmid, 1989) can be invoked.

Recall the deviation of interest,

ǫik =
1

mi

∑

j|(i,j)∈T

fk(xij)

−
1

m̂i

∑

j|(i,j)∈Q

∑

xij

fk(xij)p(xij |ui, vj).

Clearly, ǫik is a function of the independent ratings
xij for all j such that (i, j) ∈ T and a function of
the independent item descriptors vj for all j such that
(i, j) ∈ Q. The Lipschitz constants of this function of
two sets of independent variables will be examined.

Since the range of function fk is bounded by [0, 1], the
deviation function ǫik is Lipschitz continuous with con-
stants 1/mi for the training ratings and 1/m̂i for the
query item variables. Furthermore, ǫik is a function of
two sets of independent variables allowing the appli-
cation of McDiarmid’s inequality (twice). After sim-
plifying, the probability of ǫik exceeding its expected
value by a constant t1 is bounded by

p (ǫik − Ex,v[ǫik] ≥ t1) ≤ exp

(

−
2mim̂it

2
1

mi + m̂i

)

. (7)

Here, we write Ex,v to denote the expectation over
the training ratings {xij | (i, j) ∈ T } and all item
descriptors, {vj|(i, j) ∈ T ∪Q}. The expectation E[ǫik]
is not exactly zero but can be shown to be close to
zero with high probability. First, simplify the quantity
using the linearity of expectation to obtain

Ex,v[ǫik] =
1

mi

∑

j|(i,j)∈T

Ex[fk(xij)] −

1

m̂i

∑

j|(i,j)∈Q

Ev

[

∑

x

fk(xij)p(x|ui, vj)

]

.

Rewrite the training expectation directly in terms
of the training probabilities

∑

xij
fk(xij)p(xij |ui, vj).

Similarly, since all the v variables are sampled iid,
rewrite their expectation explicitly as follows

Ex,v[ǫik] =
1

mi

∑

j|(i,j)∈T

∑

xij

fk(xij)p(xij |ui, vj) −

1

m̂i

∑

j|(i,j)∈Q

∫

v

∑

xij

fk(xij)p(xij |ui, v)p(v)dv.
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Since the query summation no longer depends on the
j index, omit the average over the j query indices,

Ex,v[ǫik] =
1

mi

∑

j|(i,j)∈T

∑

xij

fk(xij)p(xij |ui, vj) −

∫

v

∑

x

fk(x)p(x|ui, v)p(v)dv. (8)

After the simplifications illustrated above, the training
sum (the first term in Equation (8)) is a function of the
training item descriptors vj for all j where (i, j) ∈ T .
This function has Lipschitz constant 1/mi. Also, the
second term in Equation (8) is the expectation of the
function. Therefore, McDiarmid’s inequality directly
applies to this difference. The probability of E[ǫik]
exceeding a constant t2 is bounded by

p (E[ǫik] ≥ t2) ≤ exp
(

−2mit
2
2

)

. (9)

A union bound will be used to combine both devia-
tions. Define the right-hand side of Equation (7) as

δ

2
= exp

(

−
2mim̂it

2
1

mi + m̂i

)

.

Rewriting the above such that the corresponding de-
viation t1 is a function of δ yields

t1 =

√

(mi + m̂i) ln 2
δ

2mim̂i

.

Similarly, let the right-hand side of the deviation
bound in Equation (9) be δ/2. The corresponding de-
viation as a function of δ is then

t2 =

√

ln 2
δ

2mi

.

Defining the total deviation as ǫik = t1 + t2 and ap-
plying a union bound completes the proof.

B Maximum Entropy Dual

Since the number of queries can be much larger than
the number of users and items, convert the maximum
entropy problem into dual form via the Lagrangian

min
γ,λ∈R+,ζ∈R

max
p

∑

ij∈Q

H(pij(xij))+

∑

ij∈Q
xij

pij(xij) ln p0(xij) −
∑

ij∈Q

ζij(
∑

xi

pij(xij) − 1)

+
∑

k,i

(γ+
ik − γ−

ik)





1

m̂i

∑

j|(i,j)∈Q

Exij
[fk(xij)] − µik





+
∑

k,j

(λ+
jk − λ−

jk)





1

n̂j

∑

i|(i,j)∈Q

Exij
[fk(xij)] − νjk





+(γ+
ik + γ−

ik)αi + (λ+
jk + λ−

jk)βj .

Above, we define Exij
[fk(xij)] =

∑

xij
pij(xij)fk(xij)

and use pij(xij) as shorthand for the conditional prob-
ability p(xij |ui, vj). The Lagrange multipliers γ±

ik and
λ±

jk correspond to the positive and negative absolute
value constraints for the user and item averages. The
ζij multipliers correspond to equality constraints that
force distributions to normalize.

The probabilities and the normalization multipliers
can be solved for analytically resulting in the much
simpler dual minimization program minγ,λ≥0 D where
the dual cost function is given by

D =
∑

ik

(γ+
ik + γ−

ik)αi − (γ+
ik − γ−

ik)µik +

∑

kj

(λ+
jk + λ−

jk)βj − (λ+
jk − λ−

jk)νjk +
∑

ij∈Q

lnZij .

Here, Zij is the normalizing partition function for the
estimated distribution for rating xij , and is defined as

Zij =
∑

xij

p0(xij) exp
 

P

k

 

γ
+

ik
−γ

−

ik
m̂i

+
λ
+

jk
−λ

−

jk
n̂j

!

fk(xij)

!

.

Once the Lagrange multipliers are found, the esti-
mated probabilities are normalized Gibbs distributions
of the form

pij(xij) ∝ p0(xij) exp
 

P

k

 

γ
+
ik

−γ
−

ik
m̂i

+
λ
+

jk
−λ

−

jk
n̂j

!

fk(xij)

!

.

Optimizing the cost function D requires taking partial
derivatives which can be written in terms of normal-
ized probabilities as follows

∂D

∂γ±
ik

= αi ∓ µik ±
1

m̂i

∑

j|(i,j)∈Q

∑

xij

pij(xij)fk(xij)

∂D

∂λ±
jk

= βj ∓ νjk ±
1

n̂j

∑

i|(i,j)∈Q

∑

xij

pij(xij)fk(xij).

While previous ℓ1-regularized Maxent methods have
combined the positive and negative absolute value La-
grange multipliers (Dud́ık et al., 2007), we found that
on our data, this led to numerical issues during opti-
mization. Instead, we optimize both the positive and
negative multipliers even though only one will be ac-
tive at the solution. To reduce computation time, we
use a simple cutting plane procedure. We initialize
the problem at the prior distribution where all La-
grange multipliers are set to zero and find the worst
violated constraints. We solve the dual, fixing all La-
grange multipliers at zero except the most violated
constraints, and continue increasing the constraint set
until all primal constraints are satisfied. In the worst
case, this method eventually must solve a problem
with half of the Lagrange multipliers active. Typically,
we only need to optimize a much smaller subset. We
solve the optimizations using the LBFGS-b optimizer
(Zhu et al., 1997).


