Collaborative Filtering via Rating Concentration

Bert Huang and Tony Jebara, Computer Science Department Columbia University, {bert, jebara}@cs.columbia.edu

Overview

- Goal: predict users ratings for items from observed training ratings.
- Given simple assumptions about sampling process, rating statistics must concentrate.
- Expected averages of predicted rating statistics must be close to empirical averages.
- Enforcing only concentration, least informative (maximum entropy) distribution yields state-of-the-art performance
- No need for low-rank or spectral assumptions

Sampling Assumptions

- Assume users u and items v are sampled iid from stationary distributions.
- Ratings *x* are then sampled from distributions dependent on the rating user and rated item.

 $\prod p(x_{ij}|u_i,v_j)p(u_i)p(v_j)$

• Given training ratings, $\{x_{ij}|(i,j)\in T\}$

predict query rating probabilities

 $\{p(x_{ij}|u_i,v_j)|(i,j)\in Q\}$

 Typically, the priors are parameterized, as in fMMMF (RenSre05), PMF + BPMF (SalMni08)

Rating Features

• Consider bounded functions of rating values,

$$f_k(x) \mapsto [0,1]$$
 e.g., $r_i(x) = r(x = i),$
 $f_{i,j}(x) = l(x = i \lor x = j).$

• How much can the empirical averages

$$\mu_{ik} = \frac{1}{m_i} \sum_{j \mid (i,j) \in T} f_k(x_{ij}), \ \nu_{jk} = \frac{1}{n_j} \sum_{i \mid (i,j) \in T} f_k(x_{ij})$$

deviate from the expected averages over query ratings? 1 $\sum_{\mathbf{F}} \frac{\mathbf{F}}{\mathbf{F}} = \sum_{\mathbf{F}} \frac{\mathbf$

$$\frac{-}{\hat{m}_{i}}\sum_{\substack{j\mid(i,j)\in Q}}\mathbb{E}_{p(x_{ij}\mid u_{i},v_{j})}[f_{k}(x_{ij})],$$

$$\frac{1}{\hat{n}_{j}}\sum_{\substack{i\mid(i,j)\in Q}}\mathbb{E}_{p(x_{ij}\mid u_{i},v_{j})}[f_{k}(x_{ij})]$$

Selected References

- Dudík, M., Blei, D., & Schapire, R. (2007) Hierarchical maximum entropy density estimation. ICML
- Rennie, J., & Srebro, N. (2005). Fast maximum margin matrix factorization for collaborative prediction. ICML
- Marlin, B., Zemel, R., Roweis, S., & Slaney, M. (2007) Collaborative filtering and the missing at random assumption. UAI
- Salakhutdinov, R., & Mnih, A. (2008). Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. ICML

Rating Feature Concentration

Theorem: For the ratings of user *i*, the difference

$$\epsilon_{ik} = \mu_{ik} - \frac{1}{\hat{m}_i} \sum_{\substack{j \mid (i,j) \in Q}} \mathbb{E}_{p(x_{ij} \mid u_i, v_j)}[f_k(x_{ij})]$$

between the average of $f_k(x) \mapsto [0, 1]$ over the observed ratings and the average of the expected value of $f_k(x)$ over the query ratings is bounded above by

$$\epsilon_{ik} \leq \sqrt{\frac{\ln \frac{2}{\delta}}{2m_i}} + \sqrt{\frac{(m_i + \hat{m}_i) \ln \frac{2}{\delta}}{2m_i \hat{m}_i}}$$

with probability $1-\delta$.

 Similar bound for item ratings. Both are also bounded above and below.

Maximum Entropy Method

- For fixed confidence value, concentration bounds form linear constraints on probability
- Predict least informative distribution by minimizing KL to simple prior s.t. constraints

$$\begin{split} \max_{p} & \sum_{ij \in Q} H(p_{ij}(x_{ij})) + \sum_{ij \in Q, x_{ij}} p_{ij}(x_{ij}) \ln p_{0}(x_{ij}) \\ \text{s.t.} & \left| \frac{1}{\hat{m}_{i}} \sum_{j \mid ij \in Q} \sum_{x_{ij}} p_{ij}(x_{ij}) f_{k}(x_{ij}) - \mu_{ik} \right| \leq \alpha_{i}, \forall i, k \\ & \left| \frac{1}{\hat{n}_{j}} \sum_{i \mid ij \in Q} \sum_{x_{ij}} p_{ij}(x_{ij}) f_{k}(x_{ij}) - \nu_{jk} \right| \leq \beta_{j}, \forall j, k. \end{split}$$

- Set α_i and β_j constraints using concentration bounds with fixed confidence δ
- Solve dual form using LBFGS

Synthetic Experiment

- Real data doesn't include true rating probabilities
- Generate user and item vectors $u_i, v_j \in [0, 1]^5$ and draw ratings from multinomial

$$p(x_{ij} = r | u_i, v_j) \propto u_i(r) v_j(r)$$

- Draw 100k ratings btw. 500 users and 500 items, split in half training, half query
- With true distributions, can compare KLdivergence against logistic threshold likelihood from fast Max-Margin Matrix Factorization

	fMMMF	Maxent
Log-Likelihood	-39690 ± 214	-35732 ± 216
KL-divergence	11254 ± 315	4954 ± 154

Movielens Experiment

- Movielens-million movie rating data set:
- 1m ratings by 6k+ users, for 3k+ movies, with three random splits of half training, half query ratings
- Compare likelihood with fMMMF (logistic threshold likelihood), Probabilistic Matrix Factorization (PMF) (discretized Gaussian likelihood)

	Uniform	Prior	fMMMF Distrib.	\mathbf{PMF}	
Split 1	-8.0489e+05	-7.2800e+05	-6.6907e + 05	-6.3904e + 05	-6
Split 2	-8.0489e+05	-7.2796e + 05	-6.6859e + 05	-6.3936e + 05	-6
Split 3	-8.0489e+05	-7.2809e + 05	-6.6819e + 05	-6.3987e + 05	-6
Average	-8.0489e + 05	-7.2802e + 05	-6.6862e + 05	-6.3942e + 05	-6.
Log-likelihood					

Log-likelihood for various confidence parameters

 Compare RMS error with fMMMF, PMF, Bayesian PMF and some simple combinations of different algorithms

	fMMMF	PMF	Maxent	BPMF	Maxent+fMMMF	Maz
Split 1	0.9585	0.9166	0.9168	0.8717	0.9079	
Split 2	0.9559	0.9175	0.9162	0.8710	0.9052	
Split 3	0.9583	0.9186	0.9166	0.8723	0.9065	
Average	0.9575	0.9176	0.9165	0.8717	0.9065	
	•					

Root mean squared error

Summary

- Concentration guarantees on functions over ratings predict with state-of-the-art performance
- Requires sampling assumptions but guarantees hold for any arbitrary probability functions; needs no parametric assumptions
- Future work: concentration constraints in parametric models may yield further improvement

Notation Glossary

	_
Symbol	Meaning
Xij	rating of user <i>i</i> for item <i>j</i>
U_i, V_j	user i and item j
m_i, n_j	counts of training ratings for user i and item j
\hat{m}_i, \hat{n}_j	counts of query ratings for user i and item j
T, Q	training and query rating sets
f_k	k'th bounded function of ratings
μ_{ik} , $ u_{ik}$	empirical averages of f_k for user <i>i</i> , item <i>j</i>
δ $$	failure probability of bound, or confidence paran
Н	entropy
p_0	simple max-likelihood rating prior
$lpha_{i}$, eta_{i}	allowed deviation of estimated expectation from
	empirical averages

