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• No need for low-rank or spectral assumptions

fk(x) �→ [0, 1] e.g., fi (x) = I (x = i),

fi ,j(x) = I (x = i ∨ x = j).
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• Consider bounded functions of rating values, 

• How much can the empirical averages

deviate from the expected averages over 
query ratings?

• Predict least informative distribution by 
minimizing KL to simple prior s.t. constraints

• Draw 100k ratings btw. 500 users and 500 
items, split in half training, half query

• 1m ratings by 6k+ users, for 3k+ movies, with three random 
splits of half training, half query ratings

• Compare likelihood with fMMMF (logistic threshold 
likelihood), Probabilistic Matrix Factorization (PMF) 
(discretized Gaussian likelihood)
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Table 2: Query Rating Log-Likelihoods on Movielens Data. The Maxent method has statistically significantly
higher average likelihood over the three trials according to a two-sample t-test with p value of as little as 1e− 5.
We convert the threshold model of fMMMF to a distribution for this comparison.

Uniform Prior fMMMF Distrib. PMF Maxent
Split 1 -8.0489e+05 -7.2800e+05 -6.6907e+05 -6.3904e+05 -6.1952e+05
Split 2 -8.0489e+05 -7.2796e+05 -6.6859e+05 -6.3936e+05 -6.1977e+05
Split 3 -8.0489e+05 -7.2809e+05 -6.6819e+05 -6.3987e+05 -6.1931e+05
Average -8.0489e+05 -7.2802e+05 -6.6862e+05 -6.3942e+05 -6.1953e+05

Table 3: Root Mean Square or !2 Performance of Various Algorithms. Maxent gives the least error among the
MAP methods (fMMMF, PMF and Maxent) but Bayesian PMF outperforms all methods. Combining Maxent
with other MAP methods improves accuracy.

fMMMF PMF Maxent BPMF Maxent+fMMMF Maxent+PMF
Split 1 0.9585 0.9166 0.9168 0.8717 0.9079 0.8963
Split 2 0.9559 0.9175 0.9162 0.8710 0.9052 0.8965
Split 3 0.9583 0.9186 0.9166 0.8723 0.9065 0.8973
Average 0.9575 0.9176 0.9165 0.8717 0.9065 0.8967

Weimer, M., Karatzoglou, A., Le, Q., & Smola, A. (2007).
COFI RANK - maximum margin matrix factorization
for collaborative ranking. Advances in Neural Informa-
tion Processing Systems 20.

Zhu, C., Byrd, R. H., Lu, P., & Nocedal, J. (1997). Algo-
rithm 78: L-BFGS-B: Fortran subroutines for large-scale
bound constrained optimization. ACM Transactions on
Mathematical Software, 23, 550–560.

A Concentration Proof

Proof of Theorem 1. The main intuition is that the
total deviation between the expected query average
and training average is composed of (1) the devia-
tion between the training average and the expected
training average and (2) the deviation between the ex-
pected training average and the expected query av-
erage. Since each component involves independent
(though not necessarily iid) variables, McDiarmid’s in-
equality (McDiarmid, 1989) can be invoked.

Recall the deviation of interest,
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Clearly, εik is a function of the independent ratings
xij for all j such that (i, j) ∈ T and a function of
the independent item descriptors vj for all j such that
(i, j) ∈ Q. The Lipschitz constants of this function of
two sets of independent variables will be examined.

Since the range of function fk is bounded by [0, 1], the
deviation function εik is Lipschitz continuous with con-
stants 1/mi for the training ratings and 1/m̂i for the
query item variables. Furthermore, εik is a function of
two sets of independent variables allowing the appli-
cation of McDiarmid’s inequality (twice). After sim-
plifying, the probability of εik exceeding its expected
value by a constant t1 is bounded by

p (εik − Ex,v[εik] ≥ t1) ≤ exp

(

−
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mi + m̂i

)

. (7)

Here, we write Ex,v to denote the expectation over
the training ratings {xij | (i, j) ∈ T } and all item
descriptors, {vj|(i, j) ∈ T ∪Q}. The expectation E[εik]
is not exactly zero but can be shown to be close to
zero with high probability. First, simplify the quantity
using the linearity of expectation to obtain
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Rewrite the training expectation directly in terms
of the training probabilities

∑

xij
fk(xij)p(xij |ui, vj).

Similarly, since all the v variables are sampled iid,
rewrite their expectation explicitly as follows
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Root mean squared error

• Compare RMS error with fMMMF, PMF, Bayesian PMF and 
some simple combinations of different algorithms

• Concentration guarantees on functions over ratings predict 
with state-of-the-art performance

• Requires sampling assumptions but guarantees hold for any 
arbitrary probability functions; needs no parametric 
assumptions

• Future work: concentration constraints in parametric models 
may yield further improvement

• Rennie, J., & Srebro, N. (2005). Fast maximum margin matrix 
factorization for collaborative prediction. ICML

• Salakhutdinov, R., & Mnih, A. (2008). Bayesian probabilistic matrix 
factorization using Markov chain Monte Carlo. ICML 

• Dudík, M., Blei, D., & Schapire, R. (2007) Hierarchical maximum entropy 
density estimation. ICML

Symbol Meaning
xij rating of user i for item j

ui , vj user i and item j

mi , nj counts of training ratings for user i and item j

m̂i , n̂j counts of query ratings for user i and item j

T, Q training and query rating sets
fk k’th bounded function of ratings

µik , νjk empirical averages of fk for user i ,item j

δ failure probability of bound, or confidence param.
H entropy
p0 simple max-likelihood rating prior

αi ,βj allowed deviation of estimated expectation from
empirical averages

Bert Huang, Tony Jebara

3 EXPERIMENTS

This section compares the maximum entropy (Max-
ent) method against other approaches for both syn-
thetic and real data sets. A popular contender method
is Fast Max-Margin Matrix Factorization (fMMMF)
(Srebro et al., 2005) which factorizes the rating ma-
trix subject to a low trace-norm prior. One variant
of MMMF uses logistic loss to penalize training rat-
ing errors, which provides a smooth approximation of
hinge-loss. The cost function for Fast MMMF with
all-threshold logistic loss is as follows (Rennie, 2007):

||U ||2F + ||V ||2F + C
∑

r,(i,j)∈T

ln
(

1 + esgn(xij−r)(θir−u!

i vj)
)

.

The sgn function outputs +1 when the input is posi-
tive and −1 otherwise. Consider a probabilistic inter-
pretation of fMMMF where the above cost function is
viewed as a log-loss associated with the likelihood

p(X, U, V |θ) =
∏
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p(xij |ui, vj , θ)
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i
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j

p(vj).

The priors p(ui) and p(vj) on the user and item de-
scriptors are zero-mean, spherical Gaussians scaled by
1
C and the conditional rating probability is defined by

p(xij |ui, vj , θ) ∝
∏

r

1

1 + e(sgn(xij−r)(θir−u!
i vj))

. (6)

The above allows direct comparison of log-likelihood
performance of distributions estimated via Equation
(6) versus the proposed maximum entropy method.
The logistic-loss Fast MMMF method is evaluated us-
ing the author’s publicly available code (Rennie, 2007).

Two additional comparison methods were considered:
the Probabilistic Matrix Factorization (PMF) tech-
nique (Salakhutdinov & Mnih, 2008b) and its Bayesian
extension (Salakhutdinov & Mnih, 2008a). Both meth-
ods learn the parameters of the graphical model struc-
ture in Figure 1. However, each makes parametric as-
sumptions: Gaussian observation noise and Gaussian
priors on the user and item descriptors. PMF per-
forms maximum a posteriori (MAP) estimation on the
model and Bayesian PMF uses Gibbs sampling to sim-
ulate integration over the Gaussian priors. Since PMF
only estimates Gaussian means, the noise parameters
can be set subsequently by choosing the value that
produces the highest likelihood.

Finally, for experiments with real data, we also com-
pare against the likelihoods using simple estimators
such as a uniform distribution over all ratings or an
identical maximum likelihood estimate p0(xij) for all
query ratings.

Table 1: Average Likelihood and Divergence Results
for Synthetic Data. Values are averages over 10 folds
and statistically significant improvements (according
to a two-sample t-test) are displayed in bold. Higher
log-likelihood and lower KL-divergence are better.

fMMMF Maxent
Log-Likelihood −39690± 214 −35732± 216
KL-divergence 11254± 315 4954± 154

3.1 Synthetic experiments

One drawback of real data experiments is that ground
truth rating distributions are not given, only samples
from these are available. Therefore, consider a syn-
thetic scenario where the exact rating distributions are
specified and used to generate samples to populate the
rating matrix.

First, 500 users and 500 items were sampled from a
uniform probability density such that ui, vj ∈ [0, 1]5.
The rating distribution is then a multinomial with
entries proportional to the element-wise product of
the corresponding user-item pair: p(xij = r|ui, vj) ∝
ui(r)vj(r). Subsequently, a random subset T of train-
ing ratings was formed by drawing one sample from
20% of the entries of the rating matrix. These ob-
served rating samples were provided to both fMMMF
and Maxent. For both algorithms, 10% of the train-
ing set was used for cross-validation. The appropriate
scalar regularization parameter (C or δ) was chosen by
maximizing likelihood on this validation set.

A random subset Q of testing ratings was then formed
by drawing one sample from 20% of the entries of
the rating matrix (these entries were disjoint from the
training entries). The out-of-sample test likelihood
was then computed over Q. This setting is similar to a
typical testing procedure with real data. Higher like-
lihood scores indicate a better estimate of the rating
distribution however each rating distribution is only
sampled once. Therefore, we also report the Kullback-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8.5

−8

−7.5

−7

−6.5

−6
x 105

√

ln 2/δ

Av
er

ag
e 

Lo
g 

Li
ke

lih
oo

d

 

 
Uniform
Prior
fMMMF
PMF
Maxent

Figure 2: Average Log Likelihoods for each Algorithm
on Movielens Data. The log-likelihoods are plotted
against the regularization or confidence parameter δ
in the maximum entropy method.
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Figure 2: Average Log Likelihoods for each Algorithm
on Movielens Data. The log-likelihoods are plotted
against the regularization or confidence parameter δ
in the maximum entropy method.
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Table 2: Query Rating Log-Likelihoods on Movielens Data. The Maxent method has statistically significantly
higher average likelihood over the three trials according to a two-sample t-test with p value of as little as 1e− 5.
We convert the threshold model of fMMMF to a distribution for this comparison.

Uniform Prior fMMMF Distrib. PMF Maxent
Split 1 -8.0489e+05 -7.2800e+05 -6.6907e+05 -6.3904e+05 -6.1952e+05
Split 2 -8.0489e+05 -7.2796e+05 -6.6859e+05 -6.3936e+05 -6.1977e+05
Split 3 -8.0489e+05 -7.2809e+05 -6.6819e+05 -6.3987e+05 -6.1931e+05
Average -8.0489e+05 -7.2802e+05 -6.6862e+05 -6.3942e+05 -6.1953e+05

Table 3: Root Mean Square or !2 Performance of Various Algorithms. Maxent gives the least error among the
MAP methods (fMMMF, PMF and Maxent) but Bayesian PMF outperforms all methods. Combining Maxent
with other MAP methods improves accuracy.

fMMMF PMF Maxent BPMF Maxent+fMMMF Maxent+PMF
Split 1 0.9585 0.9166 0.9168 0.8717 0.9079 0.8963
Split 2 0.9559 0.9175 0.9162 0.8710 0.9052 0.8965
Split 3 0.9583 0.9186 0.9166 0.8723 0.9065 0.8973
Average 0.9575 0.9176 0.9165 0.8717 0.9065 0.8967

Weimer, M., Karatzoglou, A., Le, Q., & Smola, A. (2007).
COFI RANK - maximum margin matrix factorization
for collaborative ranking. Advances in Neural Informa-
tion Processing Systems 20.

Zhu, C., Byrd, R. H., Lu, P., & Nocedal, J. (1997). Algo-
rithm 78: L-BFGS-B: Fortran subroutines for large-scale
bound constrained optimization. ACM Transactions on
Mathematical Software, 23, 550–560.

A Concentration Proof

Proof of Theorem 1. The main intuition is that the
total deviation between the expected query average
and training average is composed of (1) the devia-
tion between the training average and the expected
training average and (2) the deviation between the ex-
pected training average and the expected query av-
erage. Since each component involves independent
(though not necessarily iid) variables, McDiarmid’s in-
equality (McDiarmid, 1989) can be invoked.

Recall the deviation of interest,
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Clearly, εik is a function of the independent ratings
xij for all j such that (i, j) ∈ T and a function of
the independent item descriptors vj for all j such that
(i, j) ∈ Q. The Lipschitz constants of this function of
two sets of independent variables will be examined.

Since the range of function fk is bounded by [0, 1], the
deviation function εik is Lipschitz continuous with con-
stants 1/mi for the training ratings and 1/m̂i for the
query item variables. Furthermore, εik is a function of
two sets of independent variables allowing the appli-
cation of McDiarmid’s inequality (twice). After sim-
plifying, the probability of εik exceeding its expected
value by a constant t1 is bounded by

p (εik − Ex,v[εik] ≥ t1) ≤ exp
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Here, we write Ex,v to denote the expectation over
the training ratings {xij | (i, j) ∈ T } and all item
descriptors, {vj|(i, j) ∈ T ∪Q}. The expectation E[εik]
is not exactly zero but can be shown to be close to
zero with high probability. First, simplify the quantity
using the linearity of expectation to obtain
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Rewrite the training expectation directly in terms
of the training probabilities

∑

xij
fk(xij)p(xij |ui, vj).

Similarly, since all the v variables are sampled iid,
rewrite their expectation explicitly as follows
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• Generate user and item vectors

and draw ratings from multinomial

between the average of                        over the 
observed ratings and the average of the expected 
value of          over the query ratings is bounded 
above by

with probability           .     
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• Similar bound for item ratings. Both are also 
bounded above and below.

Theorem: For the ratings of user i, the difference
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• Set       and       constraints using concentration 
bounds with fixed confidence   δ

αi βj

p(xij = r |ui , vj) ∝ ui (r)vj(r)

ui , vj ∈ [0, 1]5

• With true distributions, can compare KL-
divergence against logistic threshold likelihood 
from fast Max-Margin Matrix Factorization

• Solve dual form using LBFGS

• Goal: predict users ratings for items from 
observed training ratings.

• Given simple assumptions about sampling 
process, rating statistics must concentrate.

• Expected averages of predicted rating 
statistics must be close to empirical averages.

• Enforcing only concentration, least 
informative (maximum entropy) distribution 
yields state-of-the-art performance

Collaborative Filtering via Rating Concentration

or the interaction between items and users (such as
the inner product assumption most low-rank matrix-
factorization methods make). Subsequently, we prove
that, as long as each rating distribution depends only
on the user and item involved, statistics from a user’s
(or item’s) training data concentrate around the ex-
pected averages of the query probabilities. The result
is a concentration inequality which holds regardless of
modeling assumptions. The combination of these con-
centration inequalities defines a convex hull of allow-
able distributions. With high probability, the desired
solution lives within this set but is otherwise under-
determined. A reasonable way to select a particular
member of this set is to identify the one that achieves
maximum entropy (or minimum relative entropy to a
prior). The maximum entropy criterion is merely used
as an agnostic regularizer to handle the underdeter-
mined estimation problem and ensure the uniqueness
of the recovered estimate within the convex hull.

Since the dependencies in the rating process exhibit a
hierarchical structure, the method proposed is reminis-
cent of the hierarchical maximum entropy framework
(Dud́ık et al., 2007). In fact, the proposed algorithm
can be viewed as a specific application of hierarchi-
cal maximum entropy where we estimate distributions
linked by common parents (from which we have no
samples) using statistics gathered from separate distri-
butions with one sample each. Thus, the collaborative
filtering setting is an extreme case of the hierarchical
maximum entropy setup since, without the hierarchy,
there would be no information about certain compo-
nents of the probability model. Moreover, previous
work (Dud́ık et al., 2007) proposed tree-structured hi-
erarchies while this article explores a grid-structured
(non-tree) hierarchy due to the matrix setup of users
and items in the collaborative filtering problem.

We emphasize that the proposed intuitions and con-
centration inequalities herein complement previous
parametric approaches and provide additional struc-
ture to the collaborative filtering problem. They may
be used in conjunction with other assumptions such
as low-rank matrix constraints. Similarly, the concen-
tration bounds hold whether the data is generated by
a distribution with known parametric form or by any
arbitrary distribution.

2 ALGORITHM DESCRIPTION

Consider the collaborative filtering problem where the
input is a partially observed rating matrix X ∈ ZM×N .
Each matrix element xij ∈ {1, . . . , K} is a random
variable representing the rating provided by the i’th
user for the j’th item where i ∈ {1, . . . , M} and
j ∈ {1, . . . , N}. The users {u1, . . . , uM} and the
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Figure 1: Graphical Model of Sampling Assumptions.
We solve for the probabilities of the query ratings with-
out explicitly estimating the user and item descriptors.

items {v1, . . . , vN} are variables drawn iid from ar-
bitrary sample spaces ui ∈ Ωu and vj ∈ Ωv, respec-
tively. The observed ratings (where a sample of the
random variable is provided) will be treated as a train-
ing set for the collaborative filtering problem and used
to estimate unobserved ratings (where no sample of
the random variable is available). The desired out-
put is a set of predicted probability distributions on
certain query ratings whose indices are specified a pri-
ori. Let T be the set of observed training (i, j) in-
dices and let Q be the set of query indices. Given
{xij |(i, j) ∈ T } and Q, we wish to estimate the prob-
abilities {p(xij |ui, vj)|(i, j) ∈ Q}.

2.1 Assumptions

A major challenge in the sampling setting of col-
laborative filtering is that only a single sample
rating1 is observed from the training distributions
{p(xij |ui, vj)|(i, j) ∈ T } and zero samples are observed
from the query distributions {p(xij |ui, vj)|(i, j) ∈ Q}.
To transfer information from training samples to the
query distributions, it will be helpful to make a hi-
erarchical sampling assumption. Figure 1 depicts a
graphical model representation of the proposed struc-
ture that will be used. First, users are drawn iid from
an unknown distribution p(u) and items are drawn
iid from another unknown distribution p(v). Subse-
quently, for some pairs of users and items, a rating is
drawn independently with dependence on the corre-
sponding item and user samples (the rating’s parents
in the graphical model).

It is natural to require that the ratings are samples
from multinomial distributions over a range of rat-

1Recommendation data sets may include multiple rat-
ings per user-item pair, though these are rare in practice.

• Typically, the priors are parameterized, as in 
fMMMF (RenSre05), PMF + BPMF (SalMni08)

�

ij

p(xij |ui , vj)p(ui )p(vj)

• Given training ratings,

predict query rating 
probabilities

{xij |(i , j) ∈ T}

{p(xij |ui , vj)|(i , j) ∈ Q}

• Assume users u and items v are sampled iid 
from stationary distributions.

• Ratings x are then sampled from distributions 
dependent on the rating user and rated item.

• For fixed confidence value, concentration 
bounds form linear constraints on probability

• Real data doesn't include true rating probabilities

• Movielens-million movie rating data set:

Log-likelihood

Log-likelihood for various confidence parameters


