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Missing Mean (all) Mean (positive) EM p(o) p(y|o)
bands -711.1±2.9 −711.5 ± 2.8 -710.8±2.7 −711.5± 2.8 0.92 0.87
crx -991.0±3.2 -990.9±3.2 -991.0±3.2 -990.8±3.3 0.99 0.42
echo -57.2±1.1 −57.3 ± 1.1 -57.1±1.0 −57.4 ± 1.0 0.92 0.32
hep -74.8±2.6 −75.4 ± 2.5 −75.2± 2.3 -75.1±2.5 0.90 0.27
horse-colic -299.3±2.9 −300.1 ± 2.9 −304.7± 2.2 -299.6±2.7 0.66 0.38
house-votes -555.1±2.8 -555.1±2.8 -555.1±2.5 -555.0±2.8 0.91 0.42

Table 2: Log-likelihoods of out-of-sample positive data. Best performance and those not significantly worse via a two-
sample t-test with a rejection threshold 5% in bold. Far right columns give a simple picture of missingness in data sets.
p(o) represents the proportion of data not missing, while p(pos.|o) represents the proportion of points with missing values
in the positive class. “Missing” is our method.

ple space scores the lowest likelihood while imputa-
tion to the labeled mean scores the highest likelihood.
Conversely, when the missing values are mostly in the
non-positive points, labeled-mean imputation scores
the lowest likelihood while sample-space-mean impu-
tation scores the highest. Our method, as any proper
agnostic algorithm should, scores safely in the middle
of these two high-energy imputation methods.

4.4 INCOMPLETE REAL DATA

To test the behavior of our method on real missing
data, we downloaded some of the popular data sets
from the UCI Machine Learning Repository (D. New-
man & Merz, 1998) that contain missing values. These
are classification data sets that we cast as presence-
only by hiding the class with smaller cardinality and
treating the larger class as the only “present” class.
Unfortunately most popular data sets are mostly com-
plete due to the fact that missing data is difficult to
handle. To exacerbate the natural missingness of these
data sets, we ignore the most complete half of the fea-
ture columns. The missingness in these experiments is
therefore real and occurs in varying proportions.

On 500 random splits of 50% training and 50% testing,
we evaluated the same four methods as the synthetic
case above, measuring the log-likelihood on the out-
of-sample test points given the model that scored the
highest on four-fold cross-validation. In general, our
method was competitive with the imputation methods.
More importantly, comparing to the best performing
method, ours is never significantly worse according to a
two sample t-test with a rejection threshold of 5%.The
average log-likelihoods and some basic statistics on the
missingness of each set are listed in Table 2.

5 DISCUSSION

We have proposed a natural generalization of maxent
for incomplete presence-only data. Our formulation
learns from all the features that are observable without

having to learn from imputed features. We keep track
of the missing values and use constraints based only on
the observable features. The resulting algorithm fol-
lows the principle of maximum entropy throughout the
learning process, while standard imputation methods
deviate from the principle when the imputed means
are assumed to be true.

Many problems cast as classification make sense in the
presence-only framework: for example, the many data
sets using “death” as a class label (such as the hep-
atitis data set). Since everything eventually dies, it is
reasonable to consider samples labeled “death” to be
samples from an underlying density instead of consid-
ering all samples, dead or alive, to be drawn from two
distinct classes.

We derived this paper’s extension to maxent out of
necessity. We work with proprietary data where our
goal is to predict faults in system components (anal-
ogous to “death”) and our data features are very in-
complete. Much of our missing data is due to lim-
itations in sensor technology and convenience of the
human effort necessary to take measurements. This
implies a strong change of NMAR missingness. It was
therefore unlikely that a simple MCAR method such as
mean imputation could produce accurate results. Con-
versely, sophisticated methods that may perform bet-
ter in the NMAR setting were impractical because our
data set was so large. We expect other machine learn-
ing practitioners have similar experiences, and these
data sets never become popular public benchmarks
because their incompleteness (or their presence-only
nature) make them seem infeasible for machine learn-
ing. New methods for elegantly handling incomplete
data may attract attention to these data sets.

One possible future direction can exploit the fact that
typical maxent applications employ various expanded
features. For features generated by a function over in-
dividual original features, such as threshold features,
our method translates directly. However, for fea-
tures generated by combining two dimensions, such
as quadratic features, it may be possible to precisely

Real Data

• UCI data sets with real missing values, run over 500 random training/testing splits
• Chose regularizer via cross-validation, out-of-sample log likelihoods reported in table
• Algorithms use the least complete half of the features (to exacerbate missingness)
• Best and not-statistically worse in bold (via 2-sample t-test with %5 rejection) 
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An elegant method to handle missing data when performing density estimation

Imputation
2 1 05?

?
4

?

3

5

8

9

?
5
?

1

7
8
?

9

63
2
8

2
2 1 053

2
4

2

3

5

8

9

7
5
3

1

7
8
6

9

63
2
8

2
0.1

0.3
0.25
0.15

0.2

Learning

Only works well if imputation is successful. What if it isn't?

Better 
approach:

Learning with Incomplete Data

Common 
approach: 

2 1 05?

?
4

?

3

5

8

9

?
5
?

1

7
8
?

9

63
2
8

2
0.1

0.3
0.2
0.2

0.2

Learning

Learn only from data we know

Algorithm Derivation

Maximum Entropy: use probability distribution with maximum entropy 
subject to what is known

∑
x∈observed p(x)f(x)∑

x∈observed p(x)
=

∑
x p(x)fj(x)∑
x p(x)oj(x)

max
p∈∆

H(p)

s.t.
∣∣∣∣

∑
x p(x)fj(x)∑
x p(x)oj(x)

− π̃[fj ]
∣∣∣∣ ≤ βj

p(x) =
1

Z(λ)
exp




∑

j

λj (fj(x)− π̃[fk]oj(x)) + |λj | βjoj(x)





Standard Maxent: 

Dual Formulation

Our simple idea: redefine missingness-aware expectation as

New Maxent:

where

max
p∈∆

H(p)

s.t.

∣∣∣∣∣
∑

x

p(x)fj(x)− π̃[fj ]

∣∣∣∣∣ ≤ βj

min
λ

Z(λ),

(i.e., exclude missing values from expectation and renormalize)

Symbol Definition
H(p) entropy of distribution p
fj(x) j’th feature for example x
π̃[fj ] empirical average for j’th feature
βj (user-defined) allowed expectation deviation

oj(x) indicator of whether j’th feature
is known for example x

Notation

Synthetic Data: Imputation Quality Tests
Maximum Entropy Density Estimation with Incomplete Presence-Only Data
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Figure 2: Average log-likelihood of our proposed method versus maxent with mean imputation as we vary the number
of points with missing values in the positive class. “Missing” is our method.

each of the three types of missingness. To synthesize
MCAR data, we randomly hid half of the entries in
the feature matrix. To synthesize MAR data, we se-
lected a random number of features to have missing
values, then sampled yet another Gibbs distribution
over the remaining features. We then drew points from
that distribution and hid features from those points.
Finally, to synthesize NMAR data, we sampled our
Gibbs parameters for the features we were going to
hide. Note that for the more interesting settings, MAR
and NMAR, the fraction of missing features varies be-
tween our sampled data sets.

We compare our method (“Missing”) to three standard
imputation strategies: two variants of mean imputa-
tion and Gaussian EM imputation. For mean imputa-
tion, we fill in the missing values with either the means
of the whole data set (“Mean (all)”) or the means
of only the labeled points (“Mean (positive)”). For
EM imputation we use the author’s code from (Schnei-
der, 2001). On each data set, we run four-fold cross-
validation to find the regularization term and evaluate
the highest scoring model on the out-of-sample test
points. We choose the regularization terms by sweep-
ing through a single normalized parameter β and set-
ting the individual tolerances for each feature accord-
ing to

βj = β
std({Fij ; Oij > 0})

√
∑

yiOij

.

The results are listed in Table 1.

Even with such a large number of random data sets,
the differences in performance are small. In general, it
is difficult to predict which method will be the most
accurate since one of the imputation methods can al-
ways be fortunate enough to estimate fairly accurate
feature values or the imputation could be completely
wrong, allowing our method’s agnosticism about the
missing features to be the dominant strategy.

4.3 QUALITY OF IMPUTATION

To demonstrate the effect of quality of imputation on
performance, we compare the two mean imputation
methods to ours. If we impute to the mean of the
whole sample space, we treat every data point equally
during the imputation step; we ignore the labels. If
we impute to the mean of the labeled samples, we give
the data points with missing features the benefit of the
doubt. This means the points with missing values will
pull the expected value toward the empirical mean. In
addition, π̃[fj ] using labeled-mean imputation is equal
to π̃[fj ] using our method. Therefore, it is tempting to
expect labeled-mean imputation to behave much like
our method.

In fact, the difference between our method and imput-
ing to the labeled mean is subtle but important. Equa-
tions (3) and (12) using labeled-mean imputed features
are exactly equal to our method, but the expectation
over the full sample space, Equation (5) and subse-
quent formulas derived using Equation (5) are differ-
ent. Points missing values will add constraints that
prefer high probability over those points with missing
values. One example scenario in which this is unde-
sirable is when few missing values occur in true high
probability points.

We created 500 data sets using the same sampling
method as in Section 4.2. For each data set, we hid
values randomly on 100 of the 200 samples, varying
the ratio of the number of positive samples that have
missing values. Since we always had 100 data points
with missing values, if k points were true positives and
contained missing values, 100 − k non-positive points
had missing features.

The log-likelihoods resulting from this experiment are
shown in Figure 2. When the positive class has more
missing values, mean imputation over the whole sam-

When missing data is mostly 
positive, Mean (positive) 

accurately imputes and results 
in better learning

...but Mean (all) is not as good 
because imputation is less 

accurate

...but Mean (positive) is not as good 
because imputation is less accurate

When missing data is 
mostly not positive, 

Mean (all) more 
accurately imputes and 
results in better learning

Our method is never the worst-case; it never presumes to know 
the missing values so it won't guess wrong on them!
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Figure 1: Mean running time over 100 random trials. Left: Running time with respect to number of features (n). Middle:
Running time w.r.t. size of sample space |χ|. Right: Running time w.r.t. both n and |χ|.

Missing Mean (all) Mean (positive) EM
MCAR -261.96 ± 3.04 -262.02 ± 2.99 -262.07 ± 3.05 -262.04 ± 3.05
MAR -258.58 ± 3.90 -258.70 ± 3.88 -258.75 ± 4.01 -258.63 ± 3.86
NMAR -258.79 ± 4.02 -259.05 ± 4.01 -258.88 ± 4.22 -259.04 ± 4.00
Full -254.99 ± 3.30

Table 1: Average log-likelihoods of estimated density over synthetic data. The average log-likelihood of maxent on the
full data was -254.99 ± 3.30. “Missing”, which is our method, scores the highest average likelihood.

is over the conditional distribution as in our formu-
lation. The second, however, is the expectation over
another conditional distribution of some new feature
gj , which, may perfectly reconstruct fj , thus restoring
the original expectation, or may be completely arbi-
trary.

In both cases, the missingness of the data forces us
to learn using the expectations of the actual features
over some altered distribution, but with imputation,
we may also be perturbing our view of the data with
the imputed features.

4 EXPERIMENTS

In this section, we present the procedures and results
from a few experiments designed to help understand
the behavior of our method. In Section 4.1, we test
the empirical running time of our optimization rou-
tine. In Section 4.2, we compare the out-of-sample
likelihood performance of our estimate to popular im-
putation methods on synthetic data sampled according
to each of the three missingness regimes. In Section
4.3, we compare performance between our method and
the cases of accurate imputation versus inaccurate im-
putation. Finally, in Section 4.4, we compare perfor-
mance of our method to imputation on real data with
real missingess patterns.

4.1 RUNNING TIME

We sampled random test data by drawing data points
from two random Gaussian distributions and labeling

only a subset of one Gaussian as present. To test the
running time of our algorithm, we sampled such data
sets of various sizes |χ| and feature dimensionalities
n. We ran our optimization until the dual variables
changed less than 10−12 total. Running the optimiza-
tion beyond this produced almost no change in the
solution. We ran these tests using MATLAB on a 2.4
Ghz Intel Core 2 Duo Apple Macintosh running Mac
OS X 10.5. The results are plotted in Figure 1.

There are many black-box non-linear optimization
methods, including standard packages that implement
conjugate gradient descent or Quasi-Newton optimiza-
tion, to solve our objective. However, extra care would
be necessary to properly implement the absolute val-
ues. We report our running time to demonstrate that
our optimization method is effective for practical us-
age.

4.2 MISSINGNESS TESTS

In this experiment we created synthetic presence-only
data following the assumptions from the framework.
We created 5000 synthetic data sets by drawing 200
data points uniformly from the [0, 1]10. For each data
set, we randomly drew ten λ values from a 0-mean
normal distribution of variance 1 and a random mean
µ ∈ [0, 1]10 computed a Gibbs distribution over the
data using p(x) = 1

Z
exp(

∑

j λj(fj − µj)). We then
drew 100 samples from p(x), labeled half of those pos-
itive and left the remaining 50 as testing points.

Next we created missing versions of these data sets for

Synthetic Data: Missingness Tests

• Sampled to simulate missingness settings
• Our approach: highest average out-of-sample likelihood over 5000 synthetic sets

Abbreviation Method
Missing Our method

Mean (all) mean imputation to
mean of all examples

Mean (positive) mean imputation to mean
of positive examples

EM Gaussian Expectation-
Maximization imputation

Methods Being Compared

Missingness Settings
Abbreviation Definition

MCAR Missing completely at random; missingness is iid
MAR Missing at random; missingness depends on observable features

NMAR Not missing at random; missingness depends on missing features

Motivation

Missingness and Expectations

The missingness-aware expectation can also be written as:
∑

x

p(x|oj(x))fj(x).

I.e., a real expectation over the naturally occurring distribution

p(x|oj(x)) =
p(oj(x)|x)p(x)

p(oj(x))
,

where p(oj(x)) p(oj(x)|x)and represent the statistical missingness setting.

Imputed expectations inject artificial features gj(x) when data is missing.
∑

x

p(x)gj(x)

where when oj(x)

but 
gj(x) = fj(x)

when oj(x)gj(x) ?= fj(x)

Is your good enough?gj(x)

• Following the Maximum Entropy Principle compels us to avoid assumptions

• We cannot afford to assume we know missing values, even after clever imputation

Maximum
Entropy
Fan

Maximum
Entropy
Fan

Maximum
Entropy
Fan

Machine
Learning
Expert

Mach
Lear
Expe

Maximum entropy sounds great, but 
some of my data is incomplete

Just impute values for the missing data and 
learn assuming the imputed values

Trust the imputed data as much as 
the real data?

I guess we have to give up the 
principles a little

Isn't there another way...?


