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Abstract—Incremental methods for structure learning of pair-
wise Markov random fields (MRFs), such as grafting, improve
scalability by avoiding inference over the entire feature space
in each optimization step. Instead, inference is performed over
an incrementally grown active set of features. In this paper, we
address key computational bottlenecks that current incremental
techniques still suffer by introducing best-choice edge grafting,
an incremental, structured method that activates edges as groups
of features in a streaming setting. The method uses a reservoir
of edges that satisfy an activation condition, approximating the
search for the optimal edge to activate. It also reorganizes
the search space using search-history and structure heuristics.
Experiments show a significant speedup for structure learning
and a controllable trade-off between the speed and quality of
learning.

I. INTRODUCTION

A powerful family of approaches for learning the structure
of Markov random fields (MRFs) is based on minimizing
`1-regularized scores such as the negative log likelihood [2]
of a fully connected MRF. The `1 regularization reduces the
parameters of irrelevant edges to zero. The main challenge
when using these methods is that, for large MRFs, the feature
space becomes extremely large and causes an overwhelming
computational cost. Active-set methods, such as grafting [10],
[15], [18], were introduced to promote more scalability. Despite
the benefits of active-set learning, grafting retains significant
computational costs: As a mandatory pre-learning step, grafting
computes sufficient statistics of all possible variable pairs to
enable greedy activation tests on the entire search space, and
each iteration of grafting requires a search over the large
combinatorial space of all possible edges.

This paper introduces best-choice edge grafting, an active-set
method that activates edges in a streaming fashion as groups of
parameters. The method is agnostic to the underlying inference
method. We derive an edge-activation test using a structured
group-`1 learning objective. Structure learning is performed in
a priority order: Edges are assigned different search priorities.
We use a combination of random sampling and a min-heap
priority queue [16] to efficiently explore the prioritized search
space. The method performs "online" edge activation using a
control sample of candidate edges stored in a limited-memory
reservoir. Search priorities are updated based on the search
history and structural information derived from the partially

constructed MRF structure learned so far. These strategies allow
on-demand computation of sufficient statistics for edges that are
likely to be activated, which eliminates the heavy computation
of grafting’s pre-learning phase. Best-choice edge grafting can
start—and often finish—learning well before grafting is able
to begin learning. We also introduce a trade-off parameter to
balance the speed of learning and the quality of learned MRFs.
Our experiments show that best-choice edge grafting scales
better to large datasets than grafting. Synthetic experiments
show that the proposed method performs well at recovering
the true structure, while real data experiments show that we
learn high-quality MRFs from large and diverse datasets.

II. BACKGROUND AND PRELIMINARIES

Throughout this paper, we consider the case of log-linear,
pairwise Markov random fields (MRFs). Based on a given MRF
structure, the probability of a set of variables x = {x1,..,xn} is
pw(x) =

1
Z(w)

∏
c∈C φc(x;w), where, w is a vector containing

the model’s parameters, Z(w) is a normalizing partition func-
tion Z(w) =

∑
x

∏
c∈C φc(x;w), and φ is a clique potential

function φc(x;w) = exp
(∑

k∈c w
>
k fk(x)

)
. The set C contains

sets of indices representing cliques and variables, and fk(x)
are feature functions often defined as indicator functions. In
the case of pairwise Markov random fields, a clique can refer
to either a node or an edge. A pairwise MRF is associated with
an undirected graph G(V,E), where V is the set of n nodes
corresponding to variables, and E is the set of edges corre-
sponding to pairwise cliques. The factorization for a pairwise
MRF is pw(x) = 1

Z(w)

∏
i∈V φi(x;w)

∏
(i,j)∈E φij(x;w).

A. Parameter Learning Through `1-Regularized Likelihood

Given a set of data X = {x(m)}m=1...N , the likelihood
is expressed as l(w) =

∏N
m=1 pw(x

(m)). We formulate
learning as a minimization of a scaled negative log like-
lihood L(w), where L(w) = − 1

N

∑N
m=1 log pw(x

(m)) =

− 1
N

∑N
m=1

(
w>f(x(m))

)
+logZ(w), and w and f correspond

to the vectors of wk and fk, respectively. Minimizing L(w)
is often done using gradients. The gradient of logZ(W ) with
respect to the kth feature is the model’s expectation of the kth



feature function [8]: ∂ logZ
∂wk

= Ew[fk(x)] =
∑
x pw(x)fk(x).

Hence, the gradient of L with respect to the kth feature is

∂L

∂wk
= − 1

N

N∑
m=1

fk(x
(m)) + Ew[fk(x)]

= Ew[fk(x)]− ED[fk(x)] := δkL.

(1)

In other words, the feature-wise gradient δkL is the error
between the data expectation ED and the model expectation
Ew of fk(x). The goal of learning can be seen as minimizing
that error. To avoid over-fitting and to promote sparsity of the
learned weights and of the learned Markov network, classical
methods add an `1 regularization and solve minw L(w) +
λ||w||1.

B. Learning Challenges

Learning with the gradient in Eq. (1) is prohibitively
expensive for three reasons: (i) The expectation requires
computing sufficient statistics for every unary and pairwise
feature, which is especially expensive for large datasets. (ii) The
classical `1 formulation ignores the structure of MRFs and
treats parameters independently. This treatment dismisses the
importance of local consistencies and the power of Markov
independence encoded in structure. Finally, (iii) inference of
the model expectations Ew[fk(x)] is generally #P-complete
[8]. Existing techniques focus on minimizing the cost of the
inference subroutine (iii). Active-set methods allow the learning
optimization to compute inference over simpler MRFs. And
various approximate inference methods efficiently approximate
the expectations, such as loopy belief propagation, its variants,
and pseudolikelihood-based methods [3], [6], [9], [11], [12],
[14], [17]. Group sparsity methods [5] can be straightforwardly
adapted to address the structural coherence issue (ii). Our
approach extends these methods of handling issues (ii) and
(iii) while also addressing the critical bottleneck of sufficient
statistic computation (i) and additional bottlenecks in active-set
algorithms.

C. Grafting

Grafting and its variants [10], [15], [18] are active-set learn-
ing approaches that alternate between two primary operations:
(1) They learn parameters for an active set S of features (e.g.,
using a sub-gradient method); and (2) they expand the active
set by activating one feature using a gradient test based on the
Karush-Kuhn-Tucker (KKT) conditions of the `1-regularized
objective. Grafting converges when the activation step does
not find any new features to activate or when a predefined
maximum number of features fmax is reached. Grafting has a
startup bottleneck with an O(n2Ns2max) computational cost to
compute the sufficient statistics for each feature, for a system
of n variables and a maximum number of states smax. Grafting
also involves an exhaustive O(n2s2max)-time search to activate
each feature. These bottlenecks translate to poor scalability for
large systems and datasets.

Although grafting is fairly suitable for learning MRFs, it
does not consider structural information or different clique-
memberships of features. Furthermore, while grafting avoids

expensive inference, it still requires various quadratic-cost
operations: one that scales with the typically large amount of
data and one that must be repeated each iteration of the main
learning loop.

D. Group Sparsity and Edge Grafting

Using `1 regularization promotes sparsity uniformly across
all parameters. Different regularizers can instead enforce
structured sparsity [5]. A similar approach leads to a natural
extension of grafting for MRF structure learning. We refer to
this variation as edge grafting, as it activates edges instead
of features. Accordingly, we define the search set F and the
active set S respectively as sets of inactive and active edges.
To include structural information in the likelihood function,
we use group-`1 regularization. This regularization prefers
parameters of each node and each edge to be homogeneous
and whole edges to be sparse. We define the group-`1 negative
log likelihood as follows:

L(w) = L(w) +
∑
g∈G

λdg||wg||2 + λ2||w||22 . (2)

Each group g contains the weights for either a node or an
edge. Consequently, wg refers to the sub-vector containing
all weights related to features of group g. We define dg as a
group scaling parameter and set it to the number of states per
clique. As in elastic-net methods [19], we add the `2-norm
to avoid some shortcomings of group-`1 regularization, such
as parameter imbalance and aggressive group selection. We
derive a KKT optimality condition for the optimization problem
minw L(w) as follows:{ ||δgL||2

dg
+ λ2||wg||22 = 0 if ||wg||2 6= 0

||δgL||2
dg

≤ λ if ||wg||2 = 0 ,
(3)

where δgL is the sub-vector constructed using the entries of
the gradient vector L corresponding to group g. The above
condition requires the probability errors of inactive edges to be
smaller than λ (see eq. 5). Hence, we derive an edge-activation
test for a given edge e ∈ F ,

C2 : se > λ , (4)

where se is the activation score representing the error between
the model p̂w(e) and the data pD(e):

se =
1
de
||δeL||2 = 1

de
||p̂w(e)− pD(e)||2 . (5)

By using the group-`1 regularizer and maintaining an active
set of edges, edge grafting runs analogously to grafting but
activates parameters for entire edge potentials. Edge-based
group-`1 regularization encourages structural sparsity consistent
with Markov notions of variable independence.

III. BEST-CHOICE EDGE GRAFTING

Edge grafting requires computing sufficient statistics for
all possible edges and searching over all possible edges at
each iteration. Each of these operations costs O(n2) time. We
propose best-choice edge grafting, a method that grafts edges



in a streaming fashion using a variation of reservoir sampling
[13]. This method activates edges without considering the entire
search space. Best-choice edge grafting computes statistics on-
demand within the learning loop, and reorganizes the search
space by assigning search priorities to edges based on search
history and the structure of the partially constructed MRF
graph. This reorganization helps the method test edges more
likely to be relevant.

We include pseudocode for the discussed algorithms in the
appendix.

A. Method Overview

Best-choice edge grafting activates edges without exhaus-
tively computing all sufficient statistics or performing all
activation tests. Instead, the approach starts activating edges
by computing a small fraction of the edge sufficient statistics.
A naive strategy would be to activate the first encountered
edge that satisfies C2, i.e., a “first-hit” approach. However, this
approach can introduce many spurious edges. We propose an
adaptive approach inspired by best-choice problems that uses
a control sample of edges satisfying C2 stored in a limited-
memory reservoir R. By maintaining a reservoir of potential
edges to activate, we increase the probability of the algorithm
activating relevant edges. (See the discussion in our complexity
analysis in Sec. III-B.) Moreover, by introducing a reservoir
strategy, we directly generalize both the first-hit approach and
exhaustive edge grafting, which can be equivalently viewed as
using size-one reservoirs and unlimited reservoirs, respectively.

A key subroutine for best-choice edge grafting selects
the candidate edge with the highest priority. We define a
mechanism that combines random sampling with a min-heap
priority queue [16] to allow fast priority-based selection that
requires no quadratic-time operations under mild assumptions.
At all times, the edges are grouped into prioritized edges and
unseen edges. A prioritized edge is any edge whose priority is
adjusted by the algorithm, and all prioritized edges are stored
in the priority queue. Unseen edges are implicitly assigned
a default priority score ρ0, but they are not explicitly stored.
To select the edge with maximum priority, the algorithm first
examines the maximum prioritized edge from the priority queue
and compares it to ρ0. If the edge extracted from the priority
queue has lower priority than ρ0 or if the priority queue is
empty, we repeatedly sample random edges until we sample
one that is not already prioritized. As we show in Sec. III-B, the
probability of sampling an already prioritized edge approaches
zero asymptotically as the number of variables grows.

The learning loop selects edges in order of priority score
and places edges that pass the activation test into the reservoir,
which retains the edges that most violate the optimality
condition. Once enough edges have been seen, the algorithm
selects edges to activate from the reservoir and then performs
inference to update the model expectations. The priority queue
and reservoir are then updated based on the newly estimated
MRF structure (see Secs. III-A1 and III-A2), and the next
iteration begins.

There are no quadratic-time operations within the main loop.
Though there may in the worst case be O(n2) elements in the
priority queue, each insertion, removal, or update operation
costs time logarithmic in the number of stored elements, which
is O

(
log
(
n2
))

= O(2 log(n)) = O(log(n)). This efficiency
enables prioritization and management of the large search
space.

1) Reservoir management: Best-choice edge grafting strate-
gically manages the reservoir to retain edges likely to be
relevant. Let A ⊆ F be the unknown set of all edges that
currently satisfy C2. We construct a control sample R ⊆ A
from which we activate edges. Edges in the search set F are
initially assigned equal, default priorities ρ0. These priorities
will be adjusted based on informed heuristics. The method
iterates through F by extracting the highest priority edge,
generating a prioritized stream of edges to test. If a tested edge
satisfies C2, it is added to R. Otherwise, it is ignored.

When a maximum number of edge tests tmax is reached,
we start activating edges. To maintain a high-quality reservoir,
edge activation only starts after we fill R to capacity in the
first edge-activation iteration. Furthermore, if R reaches its
capacity before tmax is reached, we replace the minimum-
scoring edge in R with the newly tested edge whenever it has
a higher score. We use a simple strategy to activate edges in
the reservoir with high activation scores where we consider
edges that have at least an above-average score. We compute
the average activation score µ = 1

|R|
∑
e∈R se, and then we

define a confidence interval for choosing edges that are likely
to be relevant as Iα =

[
µ+ α(maxe∈R se − µ),maxe∈R se

]
,

where α ∈ [0,1]. The algorithm considers activating edges with
activation scores no less than τα = (1− α)µ+ αmaxe∈R se.
After deriving τα, edges are activated in a decreasing order
with respect to their scores. To avoid redundant edges and
to promote scale-free structure, we only activate edges that
are not adjacent. Note that when α = 1, we only select the
maximum-scoring edge. Reducing α increases the number of
edges to be activated at a certain step but can also result in
adding spurious edges. See the pseudocode in the appendix.

After each optimization step, edge gradients change. There-
fore, scores of reservoir edges are updated, and edges that no
longer satisfy C2 are dropped from the reservoir.

2) Search space reorganization: Best-choice edge grafting
performs search space reorganization by assigning and updating
the search priority of edges in the priority queue. The aim of
this reorganization is to increase the quality of the received
stream of edges and the reservoir. We leverage search history
and structural information.
Search history Each activation iteration, an edge with a
small activation score is unlikely to satisfy C2 in the future
and is placed further towards the tail of the priority queue.
We define an edge-violation offset ve = 1 − se

λ . When the
activation tests fail or edges are dropped from R, the low-score
edges are not immediately returned to the priority queue but
instead are “frozen” and placed—along with their violation
offsets—in a separate container L. When the search priority
queue is emptied, we refill it by re-injecting frozen edges from



TABLE I: Time complexity of different methods. The second column measures how much computation is necessary at startup. Edge grafting requires the
sufficient statistics of all possible edges to do any activation, while best-choice edge grafting only computes statistics as needed. The activation-step cost is the
cost to decide which edge to activate next. For reference, we include the approximate cost to approximate the expectations and gradient, which is typically
linear in the size of the current active set (e.g., belief propagation or pseudolikelihood).

Algorithm Suff. stats. at jth edge activation Activation step Inference

Edge grafting O
(
n2Ns2max

)
O
(
n2s2max

)
∼ O(j + n)

Best-choice edge grafting O
(
(n+ jtmax)Ns2max

)
O
(
tmaxs

2
max

)
∼ O(j + n)

L with their respective violation offsets as their new priorities.
Partial structure information As the active set grows,
so does the underlying MRF graph G. The resulting partial
structure contains rich information about dependencies between
variables. We rely on the hypothesis that graphs of real networks
have a scale-free structure [1]. We promote such structure in the
learned MRF graph by encouraging testing of edges incident
to central nodes. We start by measuring node centrality on the
partially constructed MRF graph G to detect hub nodes. A
degree-based node centrality ci for a node i is the fraction of all
possible neighbors Ni it is connected to: ci = |Ni|/(|V | − 1).
We then use a centrality threshold ĉ to identify the set of
hubs H = {i ∈ V such that ci > ĉ}. Finally, we prioritize all
edges incident to nodes in H by decrementing their priorities
by 1. The total cost of updating the min-heap structure is
O(|H|n log(n)), where O(log(n)) is the cost of updating the
priority of an edge. Reorganizing the priority queue pushes
edges more likely to be relevant to the front of the queue. This
induces a higher-quality reservoir and promotes the activation
of higher-quality edges at each activation iteration.

B. Complexity Analysis

The selection of a candidate edge, either from the priority
queue or from random sampling, is at most an O(log n) cost
under the assumption that we only observe O(n) candidate
edges through learning. For each edge selection, we must
examine the highest priority entry in the priority queue, which
costs O(log n). Then if that priority is higher than the default
priority, the selection task is complete. If not, we must randomly
sample an unseen edge. Randomly sampling any edge costs
O(1) time, and checking that the edge has not yet been seen
requires another O(1) set-membership check. If the edge has
been seen, then we need additional samples until we sample an
unseen edge. Fortunately, if the number of seen edges is less
than some constant factor of n, i.e., βn, then the probability
of sampling a previously seen edge is βn/

(
n
2

)
, or 2β/(n− 1),

which asymptotically approaches zero.
If it takes the algorithm r edge tests to fill the reservoir in

one pass, then best-choice edge grafting performs Õ(rNs2max)
operations to compute the sufficient statistics necessary to fill
the reservoir and activate the first edges. (We use Õ notation,
omitting the logarithmic costs of using the priority queue.) To
activate the jth edge, the algorithm needs to perform at most
Õ
(
(r + jtmax)Ns

2
max

)
operations, where tmax is the allowed

number of edge tests between two activation steps.
In most cases, we can assume that it takes the algorithm

r = O(|R|) tests to fill the reservoir R. Furthermore, to
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Fig. 1: Simulated edge ranks using the reservoir. The curves show that the
average and expected ranks are nearly identical, and the shaded region indicates
the full range of ranks obtained during 100 random trials.

construct a relevant reservoir, we set |R| = O(n). We also set
tmax � n, so to activate the jth edge, the algorithm needs
to compute at most O

(
(n+ jtmax)Ns

2
max

)
sufficient statistics

tables. In the case of edge grafting, the algorithm needs to
compute O(n2Ns2max) sufficient statistics to start grafting the
first edge. Since (n + jtmax) � n2, our method provides a
drastic speedup, as we circumvent the quadratic term in n and
replace it with a linear term. Finally, between each activation
step, we must compute approximate expectations to obtain the
gradient. Approximate inference techniques typically take time
linear in the number of active edges. Table I summarizes the
different time complexity for the discussed algorithms.

IV. EXPERIMENTAL EVALUATION

Our experiments include simulation of reservoir-based search
and evaluation of the speed and quality of learning from
synthetic and real data. We use datasets of different variable
dimensions and dataset sizes. In the synthetic setting, we
simulate MRFs and generate data using a Gibbs sampler. In
the real setting, we use two datasets. We use exhaustive edge
grafting (labeled “EG” in figures) as our primary baseline. To
show the benefits of the reservoir, we also include best-choice
edge grafting with no reservoir (“first hit”), which activates
the first edge that passes the edge-activation condition.

A. Benefits of the Reservoir

We analyze the increase in edge quality that the reservoir
provides. The reservoir management protocol mimics a reser-
voir of randomly selected entries from the full population.
Asymptotically, the relative percentile of any randomly chosen
edge is equivalent to a uniform random variable in the range
[0, 1]. The rank of the best edge in a size-|R| reservoir is thus



analogous to the minimum of |R| uniform draws. It is well
known that the expected value of this minimum is 1/(|R|+1).
We simulate the behavior in finite settings, sampling |R| ranks
from the list of all possible numbers from 1 to

(
n
2

)
and taking

the minimum. We then plot the average minimum rank over 100
trials, using n = 400 with values of |R| from 1 to 500. Fig. 1
plots the average ranks over the trials. The results suggest that
a small reservoir provides significant gains over using first hit
(|R| = 1). Using an unlimited reservoir—i.e., grafting—only
provides negligible gains over a small reservoir. Since grafting
is equivalent to a reservoir of size

(
400
2

)
, or 79,800, the benefits

of using a reservoir are evident.
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Fig. 2: Loss vs. time (seconds) for varying MRF sizes with O(n) edges.

B. Synthetic Data
We construct random, scale-free structured MRFs with

variables having five states each. We generate preferential-
attachment graphs [1] of size 200, 400, and 600, with 498,500,
1,997,000, and 4,495,500 parameters, respectively. We then use

Gibbs sampling to generate a set of 20,000 data points, which
we randomly split into 19,000 training and 1,000 held-out test
data points. We use grid search to tune the learning parameters.
We fix |R| = n, and tmax � n. See the appendix for more
details on the experimental setup.

Faster convergence We first investigate the behavior of
different methods when executed until no violating edge
remains in the search space. We measure the different methods’
convergence speeds and confirm that they lead to similar
solutions. Figure 5 shows that all methods reach a similar
solution, but best-choice edge grafting has a faster convergence
rate. The first-hit baseline starts with a fast descent rate, but
its activation of lower-violation edges eventually causes it to
converge slower than edge grafting. Using a reservoir maintains
a steep descent until convergence. These experiments also
confirm that edge grafting suffers a major cost of computing
sufficient statistics, causing it to start optimization after best-
choice edge grafting has nearly converged.

Controllable tradeoff between learning speed and quality
In subsequent experiments, we fix the maximum number of
activated edges to 3n, stopping early when each algorithm
exhausts this limit. We first measure the objective value during
learning and plot it over running time in Fig. 2. We observe
similar trends: Best-choice edge grafting provides significant
speedups over exhaustive and first-hit edge grafting. Higher α
values enable better quality but result in a slower optimization.
Experiments on held-out testing data (Fig. 3) show that there
is a positive correlation between the learning objective and the
test negative log pseudo-likelihood (NLPL), which confirms
that the learned models do not over-fit even with small values
of α. The first-hit baseline reaches the edge limit faster, but
its lower-quality edges cause slower convergence (see Fig. 5)
and a lower quality model (Figs. 2 and 4).

Faster edge activation For increasing amounts of variables,
the learning gap between best-choice edge grafting and ex-
haustive edge grafting increases, which demonstrates the better
scalability of the best-choice algorithm. In the smaller graphs,
exhaustive edge grafting has the advantage that its greedy
search for the worst-violating edge enables large improvements
in the objective (and pseudo-likelihood). However, in the
larger graphs, even though edge grafting precomputes sufficient
statistics, the remaining O(n2) cost of the greedy search causes
its objective to descend at a slower rate than the best choice
variants, which avoid this exhaustive search. This high cost is
especially evident in the 600-variable problems (e.g., Fig. 2c),
where it takes nearly ten times as long for edge grafting to add
the desired number of edges as the reservoir-based best-choice
approaches.
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Fig. 3: Negative log pseudo-likelihood (NLPL) vs. time (seconds) for varying MRFs sizes with O(n) edges.
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Fig. 4: Recall vs. time (seconds) for varying MRFs sizes with O(n) edges.

0 2000 4000 6000 8000 10000
Time

220

240

260

280

300

LO
S
S

α=1 
α=0. 75 
α=0. 5 
α=0. 25 
α=0 

First Hit
EG

Fig. 5: Objective values vs. seconds during full convergence of all methods
(200 nodes). The first-hit method takes around 30,000 seconds to converge,
so we truncate the horizontal axis for a better view of the other methods.

0 100 200 300 400 500 600 700
Time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
e
ca

ll 
S
co

re

α=1

α=1 (s)
α=0. 5

α=0. 5 (s)
α=0 
α=0 (s)

Fig. 6: Role of structure heuristics in improving the quality of the learned MRF
over training time (seconds). The proposed heuristics (labeled “s”) produce
higher recall for an MRF of 200 nodes and 600 edges.

Structure learning quality Fig. 4 plots the recall of true
edges over time until the maximum number of added edges is
met. Increasing values of α lead to better recall for different
MRF sizes. However, this comes at the cost of a more expensive
learning optimization. In fact, for smaller values of α, best-
choice edge grafting tends to activate more edges but with
lower quality, which introduces a greater number of false-
positive edges. This early stopping setting forces the number
of correctly activated edges to be lower for lower values of
α. However, if the goal of learning the MRF structure is to
produce a good generative model, then lower α values speed
up learning with only a small loss in generative quality.
Effectiveness of structure heuristics To evaluate the
effectiveness of structure heuristics, Fig. 6 plots the edge
recall—for the same limited number of activated edges—with
and without the structure-based priority queue reorganization.
The significant gap between the recall curves shows that the
heuristics produce a higher-quality edge stream from the priority
queue, resulting in a higher-quality reservoir and more relevant
edges to activate.

C. Real Data

We use the Jester joke ratings [4] and Yummly recipes
[7] datasets. Jester is a joke ratings dataset containing 100
jokes and 73,421 user ratings. We use jokes as variables and
user ratings as instances. We map the ratings interval from a
continuous interval in [0, 20] to a discrete interval from 1 to
5, leading to 124,250 parameters. We sample 10,000 recipes



from the Yummly data, using the 489 most common ingredients
(which occur in at least 150 recipes) as binary variables and
each recipe as a data instance, leading to 478,242 parameters.
We randomly sample 10% of the initial data and use it as held-
out testing data. Since true edges for the underlying model of
real data are not available, we measure learning quality using
negative log pseudo-likelihood.

Figure 7 shows a positive correlation between the mini-
mization of the learning objective and the testing negative
log pseudo-likelihood. The results are similar to those from
the synthetic experiments, where best-choice edge grafting
converges faster than edge grafting, and smaller values of α
result in a faster convergence. The different datasets illustrate
the higher scalability of best-choice edge grafting, as its
advantage in convergence time over edge grafting increases
with dimensionality.

V. CONCLUSION

We presented best-choice edge grafting, a method based on a
group-`1 formulation and reservoir sampling. This incremental
method activates edges instead of features and uses a reservoir
to approximate greedy activation. Theoretical analysis of the
iteration complexity shows that the method provides higher
scalability than exhaustive edge grafting by avoiding its major
bottlenecks. Experiments on synthetic and real data demonstrate
that best-choice edge grafting yields faster convergence on
multiple datasets, while also achieving structure recovery and
predictive ability similar to the more costly exhaustive edge
grafting.
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APPENDIX

We summarize edge grafting, as discussed in Section 3.1,
in Algorithm 1.

Figure 8 presents a high-level description of the best-choice
edge-activation mechanism: From left to right, the first structure
is the priority queue (pq) initialized with the set of all possible
edges. The next diamond-shaped box represents the activation
test C2, after which an edge is either added to the reservoir
(R) or to the frozen edge container L. The tmax box represents
when the maximum number of edge tests is reached, after
which edges are activated. The gray dashed line on the right
(Rmin) indicates the injection of the minimum scoring edge
in R into L, when R is full. The gray dashed line on the left
(refill(L)) indicates refilling the priority queue with the frozen
edges once it is emptied.

The priority-queue reorganization subroutine is summarized
in Algorithm 2, and the activation mechanism is presented
in Algorithm 3. These form the underlying components to
construct the main best-choice edge grafting framework in
Algorithm 4.

Our experiments show that there is only a small practical
benefit of using random sampling for default-priority edges.
For the data sizes in our experiments, the O(n2) cost to instead
initialize the full priority queue was negligible, since it is a one-
time operation. The quadratic cost only becomes a practical
bottleneck when it is repeated or compounded by the data size
N , as is the case for edge grafting. Thus, our experiments report
running times where our best-choice edge-grafting methods
take an extra half second or less for the one-time initialization
of the full priority queue.

We generate MRFs with different sizes and variables
cardinality five. In particular, we generate structures of size
200, 400, and 600, with 498,500, 1,997,000, and 4,495,500
parameters, respectively.

We first construct random, scale-free structured graphs. To
do so, we use a preferential-attachment model where we grow
a graph by attaching new nodes, each with two edges that
are preferentially attached to existing nodes with high node
centrality. The algorithm produces (2n− 4) edges. For each
node and each created edge, we sample their corresponding

parameters from a normal distribution with a mean equal to
100 and standard deviations σv = 0.5 (for nodes) and σe = 1
(for edges). This setting puts more emphasis on the edges
(pairwise relationships between nodes) and helps avoid making
the model overly dependent on only the unary potentials.

To generate data, we use a Gibbs sampler to generate a
set of 20,000 data points, which we randomly split as 19,000
training data points and 1,000 held-out testing data points.

Parameter tuning: We use a grid search to detect the
best combination of λ and λ2. We limit our search range
to the set {10−4, 10−3, 10−2, 10−1, 1} for λ and the set
{0.5, 0.75, 1, 1.5} for λ2. For each case, we choose the pair
(λ, λ2) that produces the best recall and test NLPL for the
baseline, i.e., edge grafting. It is worth noting that we did not
notice a high sensitivity of the methods for different values of
λ2, whereas smaller values of λ produce spurious edges for
different methods.



Algorithm 1 Edge Grafting
1: Define EdgeNum as the maximum allowed number of edges to graft
2: Initialize E = ∅ and F = {set of all possible edges}
3: Compute sufficient statistics of e ∀e ∈ F # cost: O(n2Ns2max)
4: AddedEges = 0
5: Continue = True
6: while EdgeNum > AddedEges and Continue do
7: Compute score se ∀e ∈ F # cost: O(n2s2max)
8: e∗ = argmaxs∈E se. # cost: O(n2)
9: if se∗ > λ then

10: E ← E ∪ {e∗}; F ← F\{e∗}
11: AddedEges ← AddedEges +1
12: Optimization weights of edges in the active set E
13: else
14: Continue ← False
15: end if
16: end while

C2?
e yes

no

tmax?
activatepq R

L

reorganize update

refill(L) Rmin

Fig. 8: High-level operational scheme of the edge activation mechanism.

Algorithm 2 Reorganize PQ
1: Compute centrality measures over partially constructed MRF graph G
2: Construct the hub set H # cost: O(n)

3: for h ∈ H do
4: for n ∈ V do
5: pq[(h,n)]← pq[(h,n)]− 1 # total loop cost: O(|H|n log(n))

6: end for
7: end for



Algorithm 3 Activation Test
1: Reorganize pq using Algorithm 2
2: E∗ = ∅
3: t = 0
4: repeat
5: if pq is empty then
6: if R is empty then
7: Break
8: end if
9: pq = Refill(L)

10: end if
11: Get edge e with highest priority from pq (or by random sampling if pq is empty)
12: if Sufficient statistics of e not already computed then
13: Compute sufficient statistics of e # cost: O(Ns2max)

14: end if
15: Compute score se. # cost: O(s2max)

16: if se > λ and R not full then
17: Add e to R # add e if capacity not reached

18: else if se > λ and (R is full and Rmin < se) then
19: Replace Rmin by e. # Rmin: minimum scroing edge in R

20: Place Rmin in L.
21: else
22: Place e in L
23: end if
24: until t = tmax

25: Compute τ
26: for e ∈ R s.t se ≥ τ do
27: if e not adjacent to edges in E∗ then
28: E ← E∗ ∪ {e}
29: end if
30: end for

Algorithm 4 Best-Choice Edge Grafting
1: Define EdgeNum as the maximum allowed number of edges to graft
2: Initialize E = ∅ and F = {set of all possible edges}
3: Initialize empty pq
4: AddedEges = 0
5: Fill R to capacity
6: while EdgeNum > AddedEges do
7: Get set E∗ of edges to activate using Algorithm 3
8: if E∗ is empty then
9: Break

10: end if
11: for e∗ in E∗ do
12: E ← E ∪ {e∗}; F ← F\{e∗}
13: AddedEges ← AddedEges +1
14: end for
15: Perform an optimization over active parameters.
16: end while


