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Abstract
Normalizing flows are deep generative models
that allow efficient likelihood calculation and sam-
pling. The core requirement for this advantage
is that they are constructed using functions that
can be efficiently inverted and for which the de-
terminant of the function’s Jacobian can be effi-
ciently computed. Researchers have introduced
various such flow operations, but few of these
allow rich interactions among variables without
incurring significant computational costs. In this
paper, we introduce Woodbury transformations,
which achieve efficient invertibility via the Wood-
bury matrix identity and efficient determinant cal-
culation via Sylvester’s determinant identity. In
contrast with other operations used in state-of-the-
art normalizing flows, Woodbury transformations
enable (1) high-dimensional interactions, (2) effi-
cient sampling, and (3) efficient likelihood eval-
uation. Other similar operations, such as 1x1
convolutions, emerging convolutions, or periodic
convolutions allow at most two of these three ad-
vantages. In our experiments on multiple image
datasets, we find that Woodbury transformations
allow learning of higher-likelihood models than
other flow architectures while still enjoying their
efficiency advantages.

1. Introduction
Deep generative models are powerful tools for modeling
complex distributions and have been applied to many tasks
such as synthetic data generation (Oord et al., 2016a; Yu
et al., 2017), domain adaption (Zhu et al., 2017), and struc-
tured prediction (Sohn et al., 2015). Examples of these
models include autoregressive models (Graves, 2013; Oord
et al., 2016b), variational autoencoders (Kingma & Welling,
2013; Rezende & Mohamed, 2015), generative adversar-
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ial networks (Goodfellow et al., 2014), and normalizing
flows (Dinh et al., 2014; 2016; Kingma & Dhariwal, 2018).
Normalizing flows are special because of two advantages:
They allow efficient and exact computation of log-likelihood
and sampling.

Flow-based models are composed of a series of invertible
functions, which are specifically designed so that their in-
verse and determinant of the Jacobian are easy to compute.
However, to preserve this computational efficiency, these
functions usually cannot sufficiently encode dependencies
among dimensions of a variable. For example, affine cou-
pling layers (Dinh et al., 2014) split a variable to two parts
and require the second part to only depend on the first. But
they ignore the dependencies among dimensions in the sec-
ond part.

To address this problem, Dinh et al. (2014; 2016) introduced
a fixed permutation operation that reverses the ordering
of the channels of pixel variables. Kingma & Dhariwal
(2018) introduced a 1×1 convolution, which are a general-
ized permutation layer, that uses a weight matrix to model
the interactions among dimensions along the channel axis.
Their experiments demonstrate the importance of capturing
dependencies among dimensions. Relatedly, Hoogeboom
et al. (2019a) proposed emerging convolution operations,
and Hoogeboom et al. (2019a) and Finz et al. (2019) pro-
posed periodic convolution. These two convolution layers
have d× d kernels that can model dependencies along the
spatial axes in addition to the channel axis. However, the in-
crease in representational power comes at a cost: These con-
volution operations do not scale well to high-dimensional
variables. The emerging convolution is a combination of two
autoregressive convolutions (Germain et al., 2015; Kingma
et al., 2016), whose inverse is not parallelizable. To com-
pute the inverse or determinant of the Jacobian, the periodic
convolution requires transforming the input and the con-
volution kernel to Fourier space. This transformation is
computationally costly.

In this paper, we develop Woodbury transformations for gen-
erative flows. Our method is also a generalized permutation
layer and uses spatial and channel transformations to model
dependencies among dimensions along spatial and channel
axes. We use the Woodbury matrix identity (Woodbury,
1950) and Sylvester’s determinant identity (Sylvester, 1851)
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to compute the inverse and Jacobian determinant, respec-
tively, so that both the training and sampling time complexi-
ties are linear to the input variable’s size. We also develop a
memory-efficient variant of the Woodbury transformation,
which has the same advantage as the full transformation
but uses significantly reduced memory when the variable is
high-dimensional. In our experiments, we found that Wood-
bury transformations enable model quality comparable to
many state-of-the-art flow architectures while maintaining
significant efficiency advantages.

2. Deep Generative Flows
In this section, we briefly introduce the deep generative
flows. More background knowledge can be found in the
appendix.

A normalizing flow (Rezende & Mohamed, 2015) is com-
posed of a series of invertible functions f = f1 ◦ f2 ◦ ... ◦ fK ,
which transform x to a latent code z drawn from a sim-
ple distribution. Therefore, with the change of variables
formula, we can rewrite the log-likelihood log pθ(x) to be

log pθ(x) = log pZ(z) +

K∑
i=1

log

∣∣∣∣det( ∂fi
∂ri−1

)∣∣∣∣ , (1)

where ri = fi(ri−1), r0 = x, and rK = z.

Flow-based generative models (Dinh et al., 2014; 2016;
Kingma & Dhariwal, 2018) are developed on the theory of
normalizing flows. Each transformation function used in the
models is a specifically designed neural network that has a
tractable Jacobian determinant and inverse. We can sample
from a trained flow f by computing z ∼ pZ(z), x =
f−1(z).

There have been many operations, i.e., layers, proposed in
recent years for generative flows. In our work, we will use
the framework of Glow (Kingma & Dhariwal, 2018) to con-
struct generative flows. Each Glow step is composed of a
actnorm layer (Kingma & Dhariwal, 2018), an invertible
convolution layer (Kingma & Dhariwal, 2018; Hoogeboom
et al., 2019a; Finz et al., 2019), and an affine coupling
layer (Dinh et al., 2014; 2016). The flow layers are con-
nected together using the multi-scale architectures (Dinh
et al., 2016), with split layers to factor out variables and
squeeze layers to shuffle dimensions, resulting in an archi-
tecture with K flow steps and L levels. Due to the space
limit, more background knowledge and other related work
will be discussed in the appendix.

3. Woodbury Transformations
In this section, we introduce Woodbury transformations as
an efficient means to model high-dimensional correlations.

3.1. Channel and Spatial Transformations

Suppose we reshape the input x to be a c× n matrix, where
n = hw. Then the 1×1 convolution can be reinterpreted as
a matrix transformation

y = W(c)x, (2)

where y is also a c× n matrix, and W(c) is a c× c matrix.
For consistency, we will call this a channel transformation.
For each column x:,i, the correlations among channels are
modeled by W(c). However, the correlation between any
two rows x:,i and x:,j is not captured. Inspired by Eq. 2, we
use a spatial transformation to model interactions among
dimensions along the spatial axis

y = xW(s), (3)

where W(s) is an n× n matrix that models the correlations
of each row xi,:. Combining Equation 2 and Equation 3, we
have

xc = W(c)x,

y = xcW
(s). (4)

For each dimension of output yi,j , we have

yi,j =

c∑
v=1

(
n∑
u=1

W
(c)
i,u · xu,v

)
·W(s)

v,j .

Therefore, the spatial and channel transformations together
can model the correlation between any pair of dimensions.
However, in this preliminary form, directly using Eq. 4 is
inefficient for large c or n. First, we would have to store two
large matrices Wc and Ws, so the space cost isO(c2+n2).
Second, the computational cost of Eq. 4 is O(c2n+ n2c)—
quadratic in the input size. Third, the computational cost
of the Jacobian determinant is O(c3 + n3), which is far too
expensive in practice.

3.2. Woodbury Transformations

We solve the three scalability problems by using a low-rank
factorization. Specifically, we define

W(c) = I(c) +U(c)V(c),

W(s) = I(s) +U(s)V(s),

where I(c) and I(s) are c- and n-dimensional identity ma-
trices, respectively. The matrices Uc, Vc, Us, and Vs are
of size c × dc, dc × c, n × ds, and dc × n, respectively,
where dc and ds are constant latent dimensions of these four
matrices. Therefore, we can rewrite Equation 4 as

xc = (I(c) +U(c)V(c))x,

y = xc(I
(s) +U(s)V(s)). (5)
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We call Eq. 5 the Woodbury transformation because the
Woodbury matrix identity (Woodbury, 1950) and Sylvester’s
determinant identity (Sylvester, 1851) allow efficient com-
putation of its inverse and Jacobian determinant.

Woodbury matrix identity.1 Let I(n) and I(k) be n- and
k-dimensional identity matrices, respectively. Let U and V
be n× k and k × n matrices, respectively. If I(k) +VU is
invertible, then (I(n)+UV)−1 = I(n)−U(Ik+VU)−1V.

Sylvester’s determinant identity. Let I(n) and I(k) be n-
and k-dimensional identity matrices, respectively. Let U
and V be n × k and k × n matrices, respectively. Then,
det(I(n) +UV) = det(I(k) +VU).

Based on these two identities, we can efficiently compute
the inverse and Jacobian determinant

xc = y(I(s) −U(s)(I(ds) +V(s)U(s))−1V(s)),

x = (I(c) −U(c)(I(dc) +V(c)U(c))−1V(c))xc, (6)

and

log

∣∣∣∣det(∂y∂x
)∣∣∣∣ = n log

∣∣∣det(I(dc) +V(c)U(c))
∣∣∣

+ c log
∣∣∣det(I(ds) +V(s)U(s))

∣∣∣ ,(7)

where I(dc) and I(ds) are dc- and ds-dimensional identity
matrices, respectively.

A Woodbury transformation is also a generalized permu-
tation layer. We can directly replace an invertible convo-
lution with a Woodbury transformation. In contrast with
1×1 convolutions, Woodbury transformations are able to
model correlations along both channel and spatial axes. We
illustrate this in Figure 1. The space complexity of Wood-
bury transformations is O(d(c+ n)), where d is the size of
latent dimension. The computational complexity of train-
ing is O(d2(c+ n) + d3), and the complexity of sampling
is O(dcn + d2(n + c) + d3). Detailed analysis is in the
appendix.

We do not restrict U and V to force W to be invertible.
Based on analysis by Hoogeboom et al. (2019a), the train-
ing maximizes the log-likelihood, which implicitly pushes
det(I +VU) away from 0. Therefore, it is not necessary
to explicitly force invertibility. In our experiments, the
Woodbury transformations are as robust as other invertible
convolution layers.

3.3. Memory-Efficient Variant

In Eq. 5, one potential challenge arises from the sizes of
U(s) and V((s)), which are linear in n. The challenge is

1A more general version replaces I(n) and I(k) with arbitrary
invertible n× n and k × k matrices. But this simplified version is
sufficient for our tasks.

(a) 1×1 convolution (b) Woodbury (c) ME-Woodbury

Figure 1. Comparison of three transformations. The 1×1 convolu-
tion only operates along the channel axis. The Woodbury transfor-
mation operates along both the channel and spatial axes, modeling
the dependencies of one channel directly via one transformation.
The ME-Woodbury transformation operates along three axes. It
uses two transformations to model spatial dependencies.

that n may be large in some practical problems, e.g., high-
resolution images. We develop a memory-efficient variant
of Woodbury transformations, i.e., ME-Woodbury, to solve
this problem. The ME version can effectively reduce space
complexity from O(d(c+ hw)) to O(d(c+ h+ w)).

The difference between ME-Woodbury transformations and
Woodbury transformations is that the ME form cannot di-
rectly model spatial correlations. As shown in Figure 1c,
it uses two transformations, for height and width, together
to model the spatial correlations. Therefore, for a specific
channel k, when two dimensions xk,i,j and xk,u,v are in two
different heights, and widths, their interaction will be mod-
eled indirectly. In our experiments, we found that this limi-
tation only slightly impacts ME-Woodbury’s performance.
More details on ME-Woodbury transformations are in the
appendix.

4. Experiments
In this section, we compare the performance of Woodbury
transformations against other modern flow architectures,
measuring bit per-dimension (log2-likelihood). More exper-
iments are in the appendix.

We train with the CIFAR-10 (Krizhevsky et al., 2009) and
ImageNet (Russakovsky et al., 2015) datasets. We compare
with three generalized permutation methods—1×1 convolu-
tion, emerging convolution, and periodic convolution—and
two coupling layers—neural spline coupling (Durkan et al.,
2019) and MaCow (Ma et al., 2019). We use Glow (Kingma
& Dhariwal, 2018) as the basic flow architecture. For each
method, we replace the corresponding layer. For example,
to construct a flow with Woodbury transformations, we re-
place the 1×1 convolution with a Woodbury transformation,
i.e., Eq. 5. For all generalized permutation methods, we use
affine coupling. For each of the coupling layer baselines,
we substitute it for the affine coupling. Ma et al. (2019)
used steps containing a MaCow unit, i.e., 4 autoregressive
convolution coupling layers, and a full Glow step. For fair
comparison, we directly use the MaCow unit to replace the
affine coupling. We tune the parameters of neural spline
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coupling and MaCow so that their sizes are close to affine
coupling. More details are in the appendix.

As discussed by Hoogeboom et al. (2019a), the models used
in (Kingma & Dhariwal, 2018) are over-parameterized, and
replacing the 1×1 convolution will not improve model per-
formance. Moreover, training these models requires a large
amount of computing resources. We follow Hoogeboom
et al. (2019a) and test the performance of small models. For
32× 32 images, we set the number of levels to L = 3 and
the number of steps per-level toK = 8. For 64×64 images,
we use L = 4 and K = 16.

Table 1. Quantitative measure of model fit (bits per-dimension).

CIFAR-10 ImageNet ImageNet
32x32 32x32 64x64

1×1 convolution 3.51 4.32 3.94
Emerging 3.48 4.26 3.91
Periodic 3.49 4.28 3.92
Neural spline 3.50 4.24 3.95
MaCow 3.48 4.34 4.15
ME-Woodbury 3.48 4.22 3.91
Woodbury 3.47 4.20 3.87

Table 2. Model sizes (number of parameters).

32x32 images 64x64 images

1×1 convolution 11.02M 37.04M
Emerging 11.43M 40.37M
Periodic 11.21M 38.61M
Neural spline 10.91M 38.31M
MaCow 11.43M 37.83M
ME-Woodbury 11.02M 36.98M
Woodbury 11.10M 37.60M

The test-set likelihoods are listed in Table 1. Our scores are
worse than those reported by Kingma & Dhariwal (2018);
Hoogeboom et al. (2019a) because we use smaller models
and we use a different training method. Kingma & Dhariwal
(2018) trained their models with very large mini-batches,
requiring parallelizing the training on multiple GPUs. In
our experiments, we train each model on a single GPU,
so we use small mini-batches. Based on the scores, 1×1
convolutions perform the worst. Emerging convolutions
and periodic convolutions score better than the 1×1 con-
volutions, since they are more flexible and can model the
dependencies along the spatial axes. Neural spline coupling
works well on 32× 32 images, but do slightly worse than
1×1 convolution on 64 × 64 images. We believe that, for
larger images, since the variable dependencies become more
complicated, we need more bins to draw better splines. Ma-
Cow does not work well on ImageNet, possibly because it

needs to be combined with affine coupling layers, as spe-
cially designed in (Ma et al., 2019). This trend demonstrates
the importance of permutation layers. They can model the
interactions among dimensions and shuffle them, which cou-
pling layers cannot do. Without a good permutation layer, a
better coupling layer still cannot always improve the perfor-
mance. The Woodbury transformation models perform the
best, likely because they can model the interactions between
the target dimension and all other dimensions, while the
invertible convolutions only model the interactions between
target dimension its neighbors. ME-Woodbury performs
only slightly worse than the full version, showing that its
restrictions provide a useful tradeoff between model quality
and efficiency.

We list model sizes in Table 2. Despite modeling rich inter-
actions, Woodbury transformations are not the largest. With
32×32 images, ME-Woodbury and 1×1 convolution are the
same size. When the image size is 64× 64, ME-Woodbury
is the smallest. This is because we use the multi-scale archi-
tecture, to combine layers. The squeeze layer doubles the
input variable’s channels at each level, so larger L suggests
larger c. The space complexities of invertible convolutions
are O(c2), while the space complexity of ME-Woodbury
is linear to c. When c is large, the weight matrices of in-
vertible convolutions are larger than the weight matrices of
ME-Woodbury.

5. Conclusion
In this paper, we develop Woodbury transformations, which
use the Woodbury matrix identity to compute the inverse
transformations and Sylvester’s determinant identity to com-
pute Jacobian determinants. Our method has the same ad-
vantages as invertible d× d convolutions that can capture
correlations among all dimensions. In contrast to the in-
vertible d × d convolutions, our method is parallelizable
and the computational complexity of our methods are linear
to the input size, so that it is still efficient in computation
when the input is high-dimensional. We test our models on
multiple image datasets and they outperform state-of-the-art
methods.
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A. More Background
In this section, we introduce more detailed background
knowledge.

A.1. Normalizing Flows

Let x be a high-dimensional continuous variable. We sup-
pose that x is drawn from p∗(x), which is the true data distri-
bution. Given a collected dataset D = {x1,x2, ...,xD}, we
are interested in approximating p∗(x) with a model pθ(x).
We optimize θ by minimizing the negative log-likelihood

L(D) =
D∑
i=1

− log pθ(xi). (8)

For some settings, variable x̃ is discrete, e.g., image pixel
values are often integers. In these cases, we dequantize x̃ by
adding continuous noise µ to it, resulting in a continuous
variable x = x̃ + µ. As shown by Ho et al. (2019), the
log-likelihood of x̃ is lower-bounded by the log-likelihood
of x.

Normalizing flows enable computation of pθ(x), even
though it is usually intractable for many other model fami-
lies. A normalizing flow (Rezende & Mohamed, 2015) is
composed of a series of invertible functions f = f1 ◦ f2 ◦
... ◦ fK , which transform x to a latent code z drawn from a
simple distribution. Therefore, with the change of variables
formula, we can rewrite log pθ(x) to be

log pθ(x) = log pZ(z) +

K∑
i=1

log

∣∣∣∣det( ∂fi
∂ri−1

)∣∣∣∣ , (9)

where ri = fi(ri−1), r0 = x, and rK = z.

A.2. Deep Generative Flows

Deep generative flows (Dinh et al., 2014; 2016; Kingma
& Dhariwal, 2018), i.e., flow-based generative models, are
developed on the theory of normalizing flows. Each transfor-
mation function used in the models is a specifically designed
neural network layer that has a tractable Jacobian determi-
nant and inverse. Given a trained flow f , we can easily
sample from it

z ∼ pZ(z), x = f−1(z). (10)

There have been many operations, i.e., layers, proposed in
recent years for generative flows. In this section, we discuss
some of the commonly used ones, and more related works
will be discussed in Appendix B.

Actnorm layers (Kingma & Dhariwal, 2018) perform per-
channel affine transformations of the activations using scale
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and bias parameters to improve training stability and perfor-
mance. The actnorm is formally expressed as

y:,i,j = s� x:,i,j + b,

where both the input x and the output y are c × h × w
tensors, c is the channel dimension, and h× w are spatial
dimensions. The parameters s and b are c× 1 vectors.

Affine coupling layers (Dinh et al., 2014; 2016) split x
into two parts, xa,xb. And then fix xa and force xb to
only relate to xa, so that the Jacobian is a triangular matrix.
Formally, affine coupling is computed as

xa,xb = split(x),
ya = xa,

yb = s(xa)� xb + b(xa),

y = concat(ya,yb),

where s and b are two neural networks with xa as input.
The split and the concat split and concatenate the variables
along the channel axis. Usually, s is restricted to be positive.
An additive coupling layer is a special case when s = 1.

Note that actnorm layers only rescale every dimension of
x, and the affine coupling layers restrict xb to only relate
to xa but omit dependencies among different dimensions
of xb. Therefore, we need additional layers to capture the
local dependencies among dimensions.

Invertible convolutional layers (Kingma & Dhariwal,
2018; Hoogeboom et al., 2019a; Finz et al., 2019) are gen-
eralized permutation layers that can capture correlations
among dimensions. The 1×1 convolution (Kingma & Dhari-
wal, 2018) is

y:,i,j = Mx:,i,j ,

where M is a c× c matrix. The Jacobian of a 1×1 convolu-
tion is a block diagonal matrix, so that its log-determinant is
hw log |det(M)|. Note that the 1×1 convolution only op-
erates along the channel axis and ignores the dependencies
along the spatial axes.

Emerging convolutions (Hoogeboom et al., 2019a) com-
bine two autoregressive convolutions (Germain et al., 2015;
Kingma et al., 2016). Each autoregressive convolution
masks out some weights to force an autoregressive structure,
so that the Jacobian is a triangular matrix and computing its
determinant is efficient. Formally, an emerging convolution
is computed as

M′1 = M1 �A1,

M′2 = M2 �A2,

y = M′2 ? (M
′
1 ? x),

where M1,M2 are convolutional kernels whose size is
c × c × d × d, and A1,A2 are binary masks. The sym-

Actnorm Layer
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Coupling Layer

(a) Flow step

Squeeze Layer

Flow Step

Split Layer

Squeeze Layer

Flow Step

zi

x (L-1)
x K

x K

zL

x

(b) Multi-scale architecture

Figure 2. Overview of architecture of generative flows. We can
design the flow step by selecting a suitable convolutional layer and
a coupling layer based on the task. Glow (Kingma & Dhariwal,
2018) uses 1×1 convolutions and affine coupling.

bol ? represents the convolution operator.2 An emerging
convolutional layer has the same receptive fields as stan-
dard convolutional layers, which can capture correlations
between a target pixel and its neighbor pixels. However, like
other autoregressive convolutions, computing the inverse
of an emerging convolution requires sequentially traversing
each dimension of input, so its computation is not paralleliz-
able and is a computational bottleneck when the input is
high-dimensional.

Periodic convolutions (Hoogeboom et al., 2019a; Finz et al.,
2019) transform both the input and the kernel to the Fourier
domain using discrete Fourier transformations, so that the
convolution function becomes an element-wise matrix prod-
uct whose Jacobian is a block diagonal matrix. A period
convolution is computed as

yu,:,: =
∑
v

F−1(F(M(p)
u,v,:,:)�F(xv,:,:)),

where F is a discrete Fourier transformation, and M(p)

is the convolution kernel whose size is c × c × d × d.
The computational complexity of periodic convolutions is
O(c2hw log(hw) + c3hw). Thus, when the input is high-
dimensional, both training and sampling become expensive.

Multi-scale architectures (Dinh et al., 2016) have been
used to compose flow layers and generate rich models. This
idea uses split layers to factor out variables and squeeze
layers to shuffle dimensions, resulting in an architecture
with number of flow steps K and number of levels L. We
illustrate this architecture in Fig. 2.

2In practice, a convolutional layer is usually implemented as
an aggregation of cross-correlations. We follow Hoogeboom et al.
(2019a) and omit this detail.
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B. Related Work
Rezende & Mohamed (2015) developed planar flows for
variational inference zt+1 = zt + uδ(wT zt + b), where
z, w, and u are d-dimensional vectors, δ() is an activation
function, and b is a scalar.

Berg et al. (2018) generalized these to Sylvester flows
zt+1 = QRδ(R̃QT zt + r), where R and R̃ are upper
triangular matrices, Q is composed of a set of orthonormal
vectors, and r is a d-dimensional vector. The resulting Jaco-
bian determinant can be efficiently computed via Sylvester’s
identity, just as our methods do. However, Woodbury trans-
formations have key differences from Sylvester flows. First,
the inputs to our layers are matrices rather than vectors, so
our method operates on high-dimensional input, e.g., im-
ages. Second, though Sylvester flows are inverse functions,
their inverse is intractable, so they cannot generate samples.
Our layers can be inverted efficiently with the Woodbury
identity. Third, our layers do not restrict the transformation
matrices to be triangular or orthogonal. In fact, Woodbury
transformations can be seen as another generalized variant
of planar flows with δ(x) = x, which can work on high-
dimensional tensors, and whose inverse is tractable.

Normalizing flows have also been used for variational in-
ference, density estimation, and generative modeling. Au-
toregressive flows (Kingma et al., 2016; Papamakarios et al.,
2017; Huang et al., 2018; Ma et al., 2019) restrict each
variable to depend on those that precede it in a sequence,
forcing a triangular Jacobian. Non-linear coupling layers re-
place the affine transformation function. Specifically, spline
flows (Müller et al., 2019; Durkan et al., 2019) use spline
interpolation, and Flow++ (Ho et al., 2019) uses a mix-
ture cumulative distribution function to define these func-
tions. Flow++ also uses variational dequantization to pre-
vent model collapse. Many works (Kingma & Dhariwal,
2018; Hoogeboom et al., 2019a; Finz et al., 2019; Karami
et al., 2019) develop invertible convolutional flows to model
interactions among dimensions. MintNet (Song et al., 2019)
is a flexible architecture composed of multiple masked in-
vertible layers. I-ResNet (Behrmann et al., 2018; Chen et al.,
2019) uses discriminative deep network architecture as the
flow. These two models require iterative methods to com-
pute the inverse. Discrete flows (Tran et al., 2019; Hooge-
boom et al., 2019b) and latent flows (Ziegler & Rush, 2019)
can be applied to discrete data such as text. Continuous-
time flows (Chen et al., 2018; Grathwohl et al., 2018) have
been developed based on the theory of ordinary differential
equations.

C. Woodbury Transformations
In this section, we introduce more details of our proposed
methods.

C.1. Woodbury Transformations

Woodbury Transformations is composed of a channel trans-
formation and a spatial transformation. To implement Wood-
bury transformations, we need to store four weight matrices,
i.e., U(c),U(s),V(c), and V(s). To simplify our analysis,
let dc ≤ d and ds ≤ d, where d is a constant. This setting
is also consistent with our experiments. The size of U(c)

and V(c) is O(dc), and the size of U(c) and V(c) is O(dn).
The space complexity is O(d(c+ n)).

For training and likelihood computation, the main computa-
tional bottleneck is computing y and the Jacobian determi-
nant. To compute y, we need to first compute the channel
transformation and then compute the spatial transformation.
The computational complexity is O(dcn). To compute the
determinant, we need to first compute the matrix product of
V and U, and then compute the determinant. The computa-
tional complexity is O(d2(c+ n) + d3).

For sampling, we need to compute the inverse transfor-
mations. With the Woodbury identity, we actually only
need to compute the inverses of I(ds) + V(s)U(s) and
I(dc) + V(c)U(c), which are computed with time com-
plexity O(d3). To implement the inverse transformations,
we can compute the matrix chain multiplication, so we
can avoid computing the product of two large matrices
twice, yielding cost O(c2 + n2). For example, for the in-
verse spatial transformation, we can compute it as xc =
y − ((yU(s))(I(ds) +V(s)U(s))−1)V(s), so that its com-
plexity is O(d3 + cd2 + cnd). The total computational
complexity is O(dcn+ d2(n+ c) + d3).

In practice, we found that for a high-dimensional input, a
relatively small d is enough to obtain good performance,
e.g., the input is 256 × 256 × 3 images, and d = 16. In
this situation, nc ≥ d3. Therefore, we can omit d and
approximately see the spatial complexity as O(c+ n), and
the forward or inverse transformation as O(nc). They are
all linear to the input size.

C.2. Memory-Efficient Woodbury transformations

Memory-Efficient Woodbury transformations can effec-
tively reduce the space complexity. The main idea is to
perform spatial transformations along the height and width
axes separately, i.e., a height transformation and a width
transformation. The transformations are:

xc = (I(c) +U(c)V(c))x,

xw = reshape(xc, (ch, w)),
xw = xc(I

(w) +U(w)V(w)),

xh = reshape(xw, (cw, h)),
y = xh(I

(h) +U(h)V(h)),

y = reshape(y, (c, hw)), (11)
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where reshape(x, (n,m)) reshapes x to be an n ×m ma-
trix. Matrices I(w) and I(h) are w- and h-dimensional iden-
tity matrices, respectively. Matrices U(w),V(w),U(h), and
V(h) are w×dw, dw×w, w×dw, and dw×w matrices, re-
spectively, where dw and dh are constant latent dimensions.

Using the Woodbury matrix identity and the Sylvester’s de-
terminant identity, we can compute the inverse and Jacobian
determinant:

y = reshape(y, (cw, h)),
xh = y(I(h) −U(h)(I(dh) +V(h)U(h))−1V(h)),

xw = reshape(xh, (ch, w)),
xw = xw(I

(w) −U(w)(I(dw) +V(w)U(w))−1V(w)),

xc = reshape(xw, (c, hw)),
x = (I(c) −U(c)(I(dc) +V(c)U(c))−1V(c))xc, (12)

log

∣∣∣∣det(∂y∂x )
∣∣∣∣ = hw log

∣∣∣det(I(dc) +V(c)U(c))
∣∣∣

+ ch log
∣∣∣det(I(dw) +V(w)U(w))

∣∣∣
+ cw log

∣∣∣det(I(dh) +V(h)U(h)
)∣∣∣ ,(13)

where I(dw) and I(dh) are dw- and dh-dimensional identity
matrices, respectively. The Jacobian of the reshape() is an
identity matrix, so its log-determinant is 0.

We call Equation 11 the memory-efficient Woodbury trans-
formation because it reduces space complexity from O(c+
hw) toO(c+h+w). This method is effective when h andw
are large. To analyze its complexity, we let all latent dimen-
sions be less than d as before. The complexity of forward
transformation is O(dchw); the complexity of computing
the determinant isO(d(c+h+w)+d3); and the complexity
of computing the inverse isO(dchw+d2(c+ch+cw)+d3).
The same as Woodbury transformations, when the input is
high dimensional, we can omit d. Therefore, the compu-
tational complexities of the memory-efficient Woodbury
transformation are also linear with the input size.

D. Experiments
In this section, we present more experiments and additional
details to aid reproducibility.

D.1. Running Time

We follow Finz et al. (2019) and compare the per-sample
running time of Woodbury transformations to other gen-
eralized permutations: 1×1 (Kingma & Dhariwal, 2018),
emerging (Hoogeboom et al., 2019a), and periodic convolu-
tions (Hoogeboom et al., 2019a; Finz et al., 2019). We test
the training time and sampling time. In training, we compute
(1) forward propagation, i.e., y = f(x), of a given function

f(), (2) the Jacobian determinant, i.e., det
(∣∣∣∂y∂x ∣∣∣), and (3)

the gradient of parameters. For sampling, we compute the
inverse of transformation x = f−1(y). For emerging and
periodic convolutions, we use 3× 3 kernels. For Woodbury
transformations, we fix the latent dimension d = 16. For
fair comparison, we implement all methods in Pytorch and
run them on an Nvidia Titan V GPU. We follow Hoogeboom
et al. (2019a) and implement the emerging convolution in-
verse in Cython, and we compute it on a 4 Ghz CPU (the
GPU version is slower than the Cython version). We first fix
the spatial size to be 64× 64 and vary the channel number.
We then fix the channel number to be 96 and vary the spatial
size.

The results are shown in Figure 3. For training, the emerg-
ing convolution is the fastest. This is because its Jacobian is
a triangular matrix, and computing its determinant is much
more efficient than other methods, which require computing
the determinants of weight matrices. The Woodbury trans-
formation is slightly slower than the 1x1 convolution, since
it contains two transformations. ME-Woodbury is slower
than the normal variant, because it has three transformations.
Emerging convolutions, Woodbury transformations, and 1x1
convolutions only slightly increase with input size, rather
than increasing with O(c3). This invariance to input size
is likely because of how the GPU parallelizes computation.
The periodic convolution is efficient only when the input
size is small. When the size is large, it becomes slow, e.g.,
when the input size is 96 × 64 × 64, it is around 30 times
slower than Woodbury transformations. In our experiments,
we found that the Fourier transformation requires a large
amount of memory. According to Finz et al. (2019), the
Fourier step may be the bottleneck that impacts periodic
convolution’s scalability.

For sampling, both 1×1 convolutions and Woodbury trans-
formations are efficient. The 1×1 convolution is the fastest,
and the Woodbury transformations are only slightly slower,
due to the fact that they are richer transformations. Neither is
sensitive to the change of input size. Emerging convolutions
and periodic convolutions are much slower than Woodbury
transformations, and their running time increases with the
input size. When the input size is 96× 128× 128, they are
around 100 to 200 times slower than Woodbury transfor-
mations. This difference is because emerging convolutions
must sequentially compute each dimension of the output and
cannot make use of parallelization, and periodic transforma-
tions require conversion to Fourier form. Based on these
results, we can conclude that both emerging convolution and
periodic convolution do not scale well to high-dimensional
inputs. In contrast, Woodbury transformations are efficient
in both training and sampling.
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Figure 3. Running time comparisons. Emerging convolutions are
inefficient in sampling, since their inverses are not parallelizable.
Periodic convolutions are efficient only when the input size is
small. Both 1×1 convolutions and Woodbury transformations are
efficient in training and sampling.

D.2. Experiments of Quantitative Evaluation

In the experiments of qualitative evalution, we compare
Woodbury transformations with 3 permutation layer base-
lines, i.e., 1x1 convolution, emerging convolution, and pe-
riodic coupling, and 2 coupling layer baselines, i.e., neural
spline coupling, and MaCow. For all generalized permuta-
tion methods, we use affine coupling, which is composed
of 3 convolutional layers, and the 2 latent layers have 512
channels. For the neural spline coupling, we set the number
of spline bins to 4. The spline parameters are generated by
a neural network, which is also composed of convolutional
layers. For 32× 32 images, we set the number of channels
to 256, and for 64×64 images, we set it to 224. For MaCow,
we directly substitue affine coupling for MaCow unit. For
32× 32 images, we set the convolution channel to 384, and
for 64× 64 images, we set it to 296.

D.3. Hyper-parameter settings

We use Adam (Kingma & Ba, 2014) to tune the learning
rates, with α = 0.001, β1 = 0.9, and β2 = 0.999. We use
uniform dequantization. The sizes of models we use, and
mini-batch sizes for training in our experiments are listed in
Table 4.

D.4. Latent Dimension Evaluation

We test the impact of latent dimension d on the performance
of Woodbury-Glow. We train our models on CIFAR-10,
and use bpd as metric. We vary d within {2, 4, 8, 16, 32}.
The results are in Table 3. When d < 8, the model per-
formance will be impacted. When d > 16, increasing d
will not improve the bpd. This is probably because when d
is too small, the latent features cannot represent the input
variables well, and when d is too big, the models become
hard to train. When 8 ≤ d ≤ 16, the Woodbury transforma-
tions are powerful enough to model the interactions among
dimensions. We also test two values of d, i.e., 16, 32, of
Woodbury-Glow on ImageNet 64× 64. The bpds of both d
are 3.87, which are consistent with our conclusion. Based
on the results, when 8 ≤ d ≤ 16, the Woodbury transforma-
tions are powerful enough to model the interactions among
dimensions.

Table 3. Evaluation of different d (bits per-dimension).

Woodbury ME-Woodbury

d = 2 3.54 3.53
d = 4 3.51 3.51
d = 8 3.48 3.48
d = 16 3.47 3.48
d = 32 3.47 3.48

In all our experiments, we set the latent dimensions of Wood-
bury transformations, and ME-Woodbury transformations
as in Table 5.
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Table 4. Model sizes and mini-batch sizes.
Dataset Mini-batch size Levels(L) Steps(K) Coupling channels

CIFAR-10 32x32 64 3 8 512
ImageNet 32x32 64 3 8 512
ImageNet 64x64 32 4 16 512
LSUN Church 96x96 16 5 16 256
CelebA-HQ 64x64 8 4 8 512
CelebA-HQ 128x128 4 5 24 256
CelebA-HQ 256x256 4 6 16 256

Table 5. Latent dimensions of Woodbury transformations and ME-Woodbury transformations. The numbers in the brackets represent the
latent dimension used in that level. For example, the dc : {8, 8, 16}, represents that the settings of dc at the three levels are 8, 8, and 16.

Dataset Woodbury ME-Woodbury

CIFAR-10 32x32 dc : {8, 8, 16} dc : {8, 8, 16}
ds : {16, 16, 8} dh : {16, 16, 8}

dw : {16, 16, 8}
ImageNet 32x32 dc : {8, 8, 16} dc : {8, 8, 16}

ds : {16, 16, 8} dh : {16, 16, 8}
dw : {16, 16, 8}

ImageNet 64x64 dc : {8, 8, 16, 16} dc : {8, 8, 16, 16}
ds : {16, 16, 8, 8} dh : {16, 16, 8, 8}

dw : {16, 16, 8, 8}
LSUN Church 96x96 dc : {8, 8, 16, 16, 16} —

ds : {16, 16, 16, 8, 8}
CelebA-HQ 64x64 dc : {8, 8, 16, 16} —

ds : {16, 16, 8, 8}
CelebA-HQ 128x128 dc : {8, 8, 16, 16, 16} —

ds : {16, 16, 16, 8, 8}
CelebA-HQ 256x256 dc : {8, 8, 16, 16, 16, 16} —

ds : {16, 16, 16, 16, 8, 8}
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E. Sample Quality Comparisons
We compare the samples generated by Woodbury-Glow and
Glow models trained on the CelebA-HQ dataset. We fol-
low Kingma & Dhariwal (2018) and randomly hold out
3,000 images as a test set. We use 5-bits images. We use
64× 64, 128× 128, 256× 256 images. Due to the our lim-
ited computing resources, we use relatively small models.
The model sizes and other settings are listed in Table 4 and
Table 5. We generate samples from the models during differ-
ent phases of training and display them in Figure 4, Figure 5,
and Figure 6. For the 64× 64 images, the samples show a
clear trend where Woodbury-Glow more quickly learns to
generate reasonable face shapes. After 100,000 iterations,
it can already generate reasonable samples, while Glow’s
samples are heavily distorted. Woodbury-Glow samples are

consistently smoother and more realistic than samples from
Glow in all phases of training. The samples demonstrate
Woodbury transformations’ advantages. For the 128× 128
images, both Glow and Woodbury-Glow generate distorted
images at iteration 100,000, but Woodbury-Glow seems to
improve in later stages, stabilizing the shapes of faces and
structure of facial features. Glow, continues generating faces
with distorted overall shapes as training continues. For the
256× 256 images, neither model ever trains sufficiently to
generate highly realistic faces, but Woodbury-Glow makes
significantly more progress in these 300,000 iterations than
Glow. Glow’s samples at 300,000 are still mostly random
swirls with an occasional recognizable face, while almost
all of Woodbury-Glow’s samples look like faces, though
distorted. Due to limits on our computational resources, we
stopped the higher resolution experiments at 300,000 itera-
tions (rather than running to 600,000 iterations as we did for
the 64× 64 experiments in the main paper). With a larger
model and longer training time, it seems Woodbury-Glow
would reach higher sample quality much faster than Glow.

Table 6. Bit per-dimension results on CelebA-HQ

Size of images Glow Woodbury-Glow

64× 64 1.27 1.23
128× 128 1.09 1.04
256× 256 0.93 0.93

The likelihoods of test set under the trained model are listed
in Table 3. For the 64×64 and 128×128 images, Woodbury-
Glow scores higher likelihood than Glow. For the 256×256
images, their likelihoods are almost identical, and are better
than the score reported in (Kingma & Dhariwal, 2018). This
may be due to three possible reasons: (1) We use affine cou-
pling rather than additive coupling, which is a non-volume
preserving layer and may improve the likelihoods; (2) Since
the test set is randomly collected, it is different from the one
used in (Kingma & Dhariwal, 2018); And (3) The model
used in (Kingma & Dhariwal, 2018) is very large, so it may
be somewhat over-fitting. Surprisingly, the clear difference
in sample quality is not reflected by the likelihoods. This
discrepancy may be because we use 5-bit images, and the
images are all faces, so the dataset is less complicated than
other datasets such as ImageNet. Moreover, even though
Glow cannot generate reasonable 256 × 256 samples, the
colors of these samples already match the colors of real im-
ages well, so these strange samples may non-intuitively be
equivalently likely as the face-like samples from Woodbury-
Glow.
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F. Additional Samples
In this section, we include additional samples from
Woodbury-Glow models trained on our various datasets.
These samples complement our quantitative analysis. We
train our models on CIFAR-10 (Krizhevsky et al., 2009),
ImageNet (Russakovsky et al., 2015), the LSUN church
dataset (Yu et al., 2015), and the CelebA-HQ dataset (Kar-
ras et al., 2017). Specifically, for ImageNet, we use 32× 32
and 64 × 64 images. For the LSUN dataset, we use the
same approach as Kingma & Dhariwal (2018) to resize the
images to be 96× 96. For the CelebA-HQ dataset, we use
64× 64, 128× 128, and 256× 256 images. For LSUN and
CelebA-HQ datasets, we use 5-bit images. The parameter
settings of our models are in Table 4 and Table 5. Due to the
file size limit, more figures can be found in (Lu & Huang,
2020)
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Figure 4. Random samples of 64× 64 images drawn with temperature 0.7 from a model trained on CelebA data.
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Figure 5. Random samples of 128× 128 images drawn with temperature 0.7 from a model trained on CelebA data.
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Figure 6. Random samples of 256× 256 images drawn with temperature 0.7 from a model trained on CelebA data.


