
A Hypergraph-Partitioned Vertex Programming Approach
for Large-scale Consensus Optimization

Hui Miao∗, Xiangyang Liu†, Bert Huang∗, Lise Getoor∗
∗Dept. of Computer Science, †Dept. of Electrical & Computer Engineering

University of Maryland, College Park, USA
{hui, bert, getoor}@cs.umd.edu∗, xyliu@umd.edu†

Abstract—In modern data science problems, techniques for
extracting value from big data require performing large-scale
optimization over heterogenous, irregularly structured data.
Much of this data is best represented as multi-relational graphs,
making vertex-programming abstractions such as those of
Pregel and GraphLab ideal fits for modern large-scale data
analysis. In this paper, we describe a vertex-programming
implementation of a popular consensus optimization tech-
nique known as the alternating direction method of multipliers
(ADMM) [1]. ADMM consensus optimization allows the ele-
gant solution of complex objectives such as inference in rich
probabilistic models. We also introduce a novel hypergraph
partitioning technique that improves over the state-of-the-art
vertex programming framework and significantly reduces the
communication cost by reducing the number of replicated
nodes by an order of magnitude. We implement our algorithm
in GraphLab and measure scaling performance on a variety
of realistic bipartite graphs and a large synthetic voter-opinion
analysis application. We show a 50% improvement in running
time over the current GraphLab partitioning scheme.

Keywords-consensus optimization; large-scale optimization;
partitioning methods; vertex programming;

I. INTRODUCTION

Large-scale data often contains noise, statistical depen-
dencies, and complex structure. To extract value from such
data, we need both flexible, expressive models and scalable
algorithms to perform reasoning over the data. In this paper,
we show how a general class of distributed optimization
techniques can be implemented efficiently on graph-parallel
abstraction frameworks.

Consensus optimization using alternating direction
method of multipliers (ADMM) is a recently popularized
general method for distributed large-scale optimization [1].
The dual optimization problem is decomposed into simple
subproblems to be solved in parallel. The combination of
the decomposition and the fast convergence of the method
of multipliers makes it suitable for many problems such as
inference in graphical models [2], [3] and popular machine
learning algorithms [4], [5].

Vertex programming is an efficient graph-parallel ab-
straction for distributed graph computation. Pregel [6] and
GraphLab [7] are recently proposed frameworks for par-
allelizing graph-intensive computation. These frameworks

adopt a vertex-centric model to define independent programs
on each vertex. Experiments show they outperform the
MapReduce abstraction by one to two orders of magnitude
in machine learning and data mining algorithms [8].

In this paper, we first investigate the bipartite topology
of general ADMM-based consensus optimization, present
its vertex-programming formulation, and develop a scalable,
parallel algorithm. Previously, Boyd et al. [1] discussed
the MapReduce implementation of ADMM with a single
global consensus variable node, which is a special case
of our setup. Secondly, we propose a novel partitioning
scheme that uses the characteristics of the computation
graph and a hypergraph interpretation of the bipartite data
graph. Our partitioning can reduce the number of replicated
vertices by an order of magnitude over the current GraphLab
partitioning scheme [7], reducing communication cost ac-
cordingly, and halving the running time. Our partitioning
strategy is of independent interest in vertex-programming
algorithm design, since it can be used for any problem
that decomposes into a bipartite computation graph, such
as belief propagation in factor-graphs.

II. MOTIVATION

Before describing our proposed algorithm (Section IV),
we begin with a simple illustrative example of the kind of
problems that can be solved using ADMM. We consider
the task of analyzing voting preferences of individuals
connected by various relationships in a social network. The
problem can be cast as a probabilistic inference problem, and
the approach that we take here is to define the model using
probabilistic soft logic (PSL) [9]. PSL is a general-purpose
language for describing large-scale probabilistic models over
continuous random variables using weighted logical rules.

A PSL program consists of a set of logical rules with con-
junctive bodies and disjunctive heads (negations allowed).
Rules are labeled with non-negative weights. The program
in Fig. 1 encodes a simple model to predict voter behavior
using information about a voter (registration) and their social
network described by different types of links indicating
various social relationships, such as FRIEND and SPOUSE.

0.5: REGISTEREDAS(A, P) → VOTES(A,P),

0.5: VOTES(A, P) ∧ FRIEND(B, A) → VOTES(B,P),

1.8: VOTES(A, P) ∧ SPOUSE(B, A) → VOTES(B,P),

0.05: VOTES(A, P) ∧ BOSS(B, A) → VOTES(B,P),

0.1: VOTES(A, P) ∧ MENTOR(B, A) → VOTES(B,P),

0.7: VOTES(A, P) ∧ OLDERRELATIVE(B, A)→ VOTES(B,P).

Figure 1. Political social network voting program written in probabilistic
soft logic. Additionally, the VOTES predicate is constrained to have total
truth value of 1.0, to preserve mutual exclusivity of voting preference.

Consider any constants for persons, a and b and party p
instantiating logical terms A, B, and P respectively. The
first rule encodes the correlation between voter registration
and party preferences, which tend to be aligned but are not
always. The next rule states that if a is a friend of b and
votes for party p, there is a chance that b votes for party p
as well, and the second rule makes the same statement for
spouses. The rule weights indicate that spouses are more
likely to vote for the same party than friends. The resulting
probabilistic model will combine all of these influences
and include the implied structured dependencies. PSL can
also include constraints on logical atoms, such as mutual
exclusivity of voting preferences VOTES.

The engine behind PSL compiles the logical program into
a continuous-variable representation known as a hinge-loss
Markov random field (HL-MRF) [3], [5]. Like many prob-
abilistic graphical models, inference in HL-MRFs can be
distributed and solved using consensus optimization. In HL-
MRFs, inference of the most-probable explanation (MPE)
is a convex optimization, and HL-MRFs are particularly
well-suited for consensus optimization. We defer to previous
papers for the mathematical formalisms of HL-MRFs, and
here mainly discuss the general ADMM-based consensus
optimization, which has many applications beyond PSL.

III. PRELIMINARIES

A. ADMM-Based Consensus Optimization

Consensus optimization simplifies the solution of a global
objective by decomposing a complex objective into simpler
subproblems over local copies of the variables and con-
straining each local copy to be equal to a global consensus
variable. The general form of the consensus optimization is

min
x1,...,xN

N∑
i=1

φi(xi)

subject to xi − ~Xi = 0, i = 1, 2, ..., N,

where xi with dimension ni is the local variable vector on
which the ith subproblem depends and φi is the objective
function for the ith subproblem. Let ~Xi denote the global
consensus variable vector that local variable xi should equal.

Relaxing the global equality constraints by the augmented
Lagrangian [1], the ADMM-based solution becomes:

xk+1
i ← argmin

xi

(
φi(xi) + λki · xi +

ρ

2

∥∥∥xi − ~Xi
k
∥∥∥2
2

)
,∀i

λk+1
i ← λki + ρ

(
xk+1
i − ~Xi

k
)
,∀i

Xk+1
l ← 1

Nl

∑
M(i,j)=l

(xi)
k+1
j ,∀l

where superscript k represents the iteration, Nl is the number
of local copies of the lth entry of global consensus variable,
λi is the vector of Lagrange multipliers for ith subproblem,
M(i, j) is the corresponding global consensus entry for jth
dimension of local variable xi, Xl denotes the lth entry of
global consensus variable, and ρ is a step size parameter. The
update of Xk+1 can be viewed as averaging local copies in
subproblems. Throughout the remainder of the paper, we
refer to ADMM-based consensus optimization as ACO.

The above equation shows that each of the subproblems
can be solved independently. This general form of consensus
optimization defines a bipartite structure G(S,C,E) where
S denotes the set of subproblems containing local variables
{xi|i = 1, 2, . . . , N}, C represents the set of consensus
variable entries, and E expresses the dependencies. Each
subproblem φi(xi) is connected to its dependent consensus
variables, while each consensus variable Xj is connected
to subproblems containing its local copies. This bipartite
dependency graph makes ADMM computation well-suited
for vertex-processing parallelization.

B. Vertex Programming Frameworks

Recent development of vertex programming frameworks,
such as Pregel [6] and GraphLab [8], are aimed at improving
the scalability of graph processing. Vertex-centric models
execute user-defined functions on each vertex independently
and define the order of execution of vertices. Pregel and
GraphLab have superior computational performance over
MapReduce for many data mining and machine learning
algorithms, such as belief propagation, Gibbs sampling,
and PageRank [6], [8]. In this paper, we implement our
synchronous vertex programs in GraphLab.

Gonzalez et al. [7] propose the gather-apply-scatter (GAS)
abstraction that describes common structures of various
vertex programming frameworks. In the vertex programming
setting, the user defines a data graph with data structures
representing vertices, edges, and messages. The user pro-
vides a vertex program associated with each vertex. The
GAS model abstracts the program into three conceptual
phases of execution on each vertex. In the gather phase,
each vertex is able to aggregate neighborhood information,
which can be pushed or pulled from adjacent nodes. The
aggregation during this phase is user-defined, but must be
commutative and associative. In the apply phase, each vertex
can use its aggregated value to update its own associated
data. Finally in the scatter phase, each vertex either sends
messages to its neighbors or updates other vertices or edges
in its neighborhood via global state variables.

IV. DISTRIBUTED ADMM-BASED CONSENSUS
OPTIMIZATION IMPLEMENTATION (ACO)

In order to implement a graph algorithm using vertex
programming, one needs to define the data graph structure
and a vertex program that defines the computation.

A. Data Graph and Data Types

In ADMM-based consensus optimization, the computa-
tion graph is based on the dependencies between subprob-
lems and consensus variables in the bipartite dependency
graph G(S,C,E) in which any consensus variable has a
degree of at least two, since any local variables that only
appear in one subproblem do not need consensus nodes.
We use different data types for subproblem vertices and
consensus-variable vertices, denoted sub and con, respec-
tively. For each subproblem vertex vi ∈ S, we maintain
the involved local variables in xi and associated Lagrange
multiplier λi, both of which are ni dimension vectors. Each
vi ∈ S also stores a vector ~Xi of dimensionality |Evi | for
holding the dependent consensus variable values. For each
consensus variable vj ∈ C, we only store its current value.

B. ACO Vertex Program

We use the GAS abstraction introduced in Section III-B
to describe our ADMM-based consensus optimization im-
plementation, ACO, shown in Alg. 1. In each iteration,
we define a temporary consensus-variable key-value table
consensus_var, where the key is a consensus variable’s
global unique ID, i.e., consensus_var[id(~X)] → ~X .
We also define a program variable local_copy_sum to
aggregate the sum of each local copy of a consensus variable.

As shown in Alg. 1, in the gather, apply and scatter stages,
we alternate computation on the subproblem nodes S and
the consensus nodes C. We describe the computation for
each type and the termination condition below.

1 ACO Algorithm
2 // gather neighbor information
3 gather(vi, (vi, vj), vj):
4 if vi.type == sub

5 consensus_var[id(vj . ~Xj)] ← vj . ~Xj
k

6 else
7 local_copy_sum + = vj .x

k
j [id(vi. ~Xi)]

8 // update the vertex data of v_i
9 apply(vi, sum_result):

10 // get consensus_var new value, solve
objective, update multiplier

11 if vi.type == sub
12 vi. ~Xi ← consensus_var

13 vi.xi ← argminxi(φi(xi)+vi.λi ·xi+
ρ
2

∥∥∥xi − vi. ~Xi∥∥∥2

2
)

14 vi.λi ← vi.λi + ρ(vi.xi − vi. ~Xi)
15 // average the sum of each local copy
16 else
17 vi. ~Xi ← local_copy_sum/degree(vi)
18 // update neighborhood
19 scatter(vi, (vi, vj), vj):

20 // notice consensus node the value change
21 if vi.type == sub
22 notify(vj)
23 else
24 if (convergence_check() == false)
25 notify(vj)

Algorithm 1. The ACO vertex program for ADMM-based Consensus
Optimization on vertex vi at iteration k + 1

1) Subproblem Nodes: In the gather phase of the (k+1)th

iteration, each subproblem node vi ∈ S reads the consensus
variables updated in the kth iteration in its neighborhood.
We store each consensus variable in the key-value table
consensus_var. The commutative and associative aggre-
gation function combines the key-value tables. We use it to
solve the optimization in subproblem in line 13, and the xi
vector is updated to the solution. Note that the subproblem
solver is application-specific. In the scatter, the subproblem
always notifies dependent consensus nodes.

2) Consensus Variable Nodes: Consensus variable nodes
vj ∈ C behave differently. Each aggregates the sum of all
local copies from the subproblem nodes in the gather phase,
then updates itself with the average in the apply phase. In the
scatter phase, convergence conditions are used to determine
whether related subproblems need to be run again.

3) Termination Conditions: One possible criterion for
convergence is the global primal and dual residual of all
consensus variables and their local copies. At the superstep,
an aggregator can be used to calculate residuals across
all consensus variables. If both primal and dual residuals
are small enough, then we reach global convergence and
the program stops. If not, all subproblems are scheduled
again in the next iteration. However, this global convergence
criterion has two disadvantages: first, the use of aggrega-
tor brings overhead as it needs to aggregate information
from all machines; second, some consensus variables and
corresponding local copies do not change much and the
subproblem counterparts are still scheduled to run, getting
the same solution, thus wasting computation resources.

Instead, our proposed convergence criterion measures
local convergence. In this local criterion, each consensus
vertex calculates both primal and dual residuals using its
dependent local copies only; if both of them are small, it
does not notify connected subproblem nodes to run in the
next iteration. For a particular subproblem node, if none of
the connected consensus variables notifies it, it skips the next
iteration, thus saving computation. A skipped subproblem
node will run again if some dependent consensus variable
is updated and the local convergence criterion is not met.

V. HYPERGRAPH PARTITIONING

Next we introduce a novel hypergraph-based partitioning
scheme (HYPER) that is better suited for ACO than current
state-of-the-art approaches, e.g., in GraphLab’s PowerGraph
[7]. The primary factors for efficient implementation of

distributed graph algorithms are load balancing and com-
munication cost. Vertex programming frameworks optimize
these by distributing data according to balanced p-way cuts
of their graphs. In our work, we use a vertex-cut formulation
in the same manner as GraphLab, which has been shown to
produce lower communication overhead than Pregel’s hash-
based random edge-cut strategy [7], [10].

A. Problem Definition and Notation

Let G(V,E) be a graph, β be the imbalance parameter.
For any v ∈ V , let A(v) denote the subset of M machines
that vertex v is assigned to. Then the balanced p-way vertex
cut problem for M machines is defined as

min
A

1

|V |
∑
v∈V

|A(v)|

subject to |{e ∈ E|A(e) = m}| ≤ β |E|
M

,∀m
(1)

where m ∈ {1, . . . ,M}. The objective corresponds to the
replication factor, and the constraint corresponds to a limit
on the edges that can be assigned to any one machine.

B. Intuition and Partitioning in State-of-the-Art Framework

The current best strategy used in GraphLab is a sequen-
tial greedy heuristic algorithm [7], which we refer to as
GREEDY. Multiple machines process sets of edges one by
one and place each of them into a machine, where the
placement A(v) is maintained across multiple machines.
When a machine places an edge (u, v), the GREEDY strategy
follows heuristic rules: if both A(u) and A(v) are ∅, edge
(u, v) is placed on the machine with the fewest assigned
edges; if only one of A(u) and A(v) is not ∅, say A(u), then
(u, v) is put in one machine in A(u); if A(u) ∩A(v) 6= ∅,
then (u, v) is assigned to one of the machines in the
intersection; the last case is both A(u) and A(v) are not ∅,
but A(u) ∩ A(v) = ∅, then (u, v) is assigned to one of the
machines from the vertex with the most unassigned edges.

Unfortunately, this GREEDY strategy does not work well
with bipartite ACO graphs. In ACO and other similar problem
structures, subproblem nodes tend to have much lower
degree than consensus nodes. Because the last heuristic in
the greedy scheme is biased to large degree nodes, GREEDY
tends to place subproblem nodes onto different machines. On
the other hand, in practice, large-scale ACO involves millions
of consensus variables, so computing a high-quality parti-
tioning is more important than fast sequential partitioning.
Once partitioned, the same topology may be reused multiple
times, for example when performing parameter optimization.

C. Hypergraph-based Partition for ACO

A large-scale ACO bipartite graph G(S,C,E) exhibits
three properties which do not fit well with the greedy heuris-
tics. a) The subproblem optimization in vs ∈ S is much
more expensive than the simple averaging in consensus
varaible vc ∈ C. Thus cutting a subproblem vertex into

multiple machines results in solving the subproblem opti-
mization multiple times; b) The consensus variable degree
follows a power-law degree distribution, while subproblem
degree distribution is centered around some small number;
and c) |S| is usually much larger than |C|. In large-scale
ACO problems, such degree distributions are common when
variables involved in subproblems correspond to objects in
the real world, especially for applications on social and
natural networks. On the other hand, due to the utility of the
ADMM decomposition, the original optimization problem
decomposes into small subproblems that are each easy to
solve, thus the degree of each subproblem node is small.
These properties of the bipartite ACO graph motivate us to
split only the consensus variables C instead of partitioning
over the whole set S ∪ C, to avoid solving subproblems
repeatedly and also to reduce the problem size.

Cutting C with the balanced edge placement constraint
in G(S,C,E) can be transformed to a hyperedge cut
problem with a balanced vertex placement constraint in
the hypergraph H(VS , EC), where VS corresponds to S,
EC is a set of hyperedges, and each e ∈ EC represents
the set of all related subproblems of a consensus variable.
Hypergraph partitioning is a well-studied area and there are
efficient packages avialable, e.g. hMETIS [11]. Our proposed
hypergraph partitioning formulation is novel in the bipartite
graph structure in vertex programming setting. Hypergraph-
based general graph partitioning is studied in [10], [12].

VI. EXPERIMENTS

In this section, we first compare our hypergraph parti-
tioning vertex-cut technique HYPER with the greedy vertex-
cut GREEDY and hash-based random partitioning RANDOM.
We then present the evaluation of our ACO implementation
using GraphLab on the large-scale social network analysis
problem introduced in Section II. In all experiments, we use
hMetis [13] with unbalanced factor β = 2 and use the sum
of external degree objective to perform the hyperedge cut.

A. Evaluation of Partitioning Strategies

1) Dataset Description: We begin by studying the effect
of different partitioning strategies on the replication factor
of the vertex program. For more details, please refer to our
technical report [14]. We generate graphs with a power-
law degree distribution for consensus variable vertices with
shape parameter α (α ∈ {2, 2.2, 2.4, 2.6, 2.8}) and a Poisson
distribution over the degree of subproblems with parameter
λ (λ ∈ {1.5, 2, 0, 2.5, 3.0, 3.5}). We also fix the number of
consensus variables to 100, 000.

2) Replication Factor Results with Synthetic Data: Given
the generated dataset, we vary the number of machines
(partitions) m ∈ {2, 4, 8, 16, 32} and measure the replication
factor RF = 1

|V |
∑N

i=1 |A(v)| of each scheme in Fig. 2.
In general, in all generated datasets, HYPER always has
a smaller replication factor than GREEDY and RANDOM.

(a) Varying m (α = 2, λ = 2) (b) Varying α (λ = 2, m = 32) (c) Varying λ (α = 2, m = 32) (d) SN1M (fits on one machine)

(e) SN2M (f) Weak scaling with increasing size (g) Run time of iterations (SN4M) (h) Execution Time (SN2M)

Figure 2. Performance of different partitioning scheme. Scaling analysis under both full and partial convergence

In the worst case, GREEDY replicates around 17× more
vertices than HYPER (α = 2, λ = 2.5,m = 2), and always
replicates 1.6× more (α = 2.8, λ = 3.5,m = 32). In
Fig. 2(a), we vary m to show how replication factor grows
when the number of machines increases. The results show
that HYPER is less sensitive to the number of machines than
the other schemes and scales better in practice.

Next we fix m = 32, vary α and λ to study the
partitioning performance based on different bipartite graph
topologies. Recall that parameter α determines the power-
law shape, as shown in Fig. 2(b), the larger α is, the smaller
the maximum degree of the consensus nodes become, and
the difference between |S| and |C| is smaller, e.g., when
α = 2.8, λ = 2 in the plot, |S|/|C| is only 1.78. In this
case, cutting the consensus nodes in HYPER provides less
improvement over GREEDY. On the other hand, in Fig. 2(c),
when λ increases, each subproblem has more variables, |S|
decreases, and replication factor increases. HYPER tends to
be less sensitive to λ than GREEDY.

In summary, our proposed hypergraph-based vertex-cut
scheme outperforms the GREEDY scheme provided in the
state-of-the-art GraphLab implementation [7], [15] for re-
alistic bipartite graph settings. Especially when the two
types of nodes in the bipartite graph are imbalanced, which
is typically the case in large-scale consensus optimization,
HYPER can generate much higher quality partitions.

B. Performance of ACO for PSL Voter Model

Next We evaluate the performance of our proposed ACO
algorithm on an MPI 2 (Open-MPI 1.4.3) cluster consisting
of eight Intel Core2 Quad CPU 2.66GHz machines with
4GB RAM running Ubuntu 12.04 Linux. We implemented
our algorithm using GraphLab 2 (v2.1.4245) [15]. For
each machine in the cluster, we start one process with 4
threads (ncpus), and we use the synchronous engine which
is explained in detail in [7]. Our proposed approach can be

applied to other vertex programming frameworks easily as it
does not use any GraphLab features beyond the synchronous
GAS API.

1) Voter Network Dataset Description: We generate so-
cial voter networks using the synthetic generator in [5] and
create a probabilistic model using the PSL program in Sec-
tion II. The details of the datasets are listed in Table I. The
smallest, SN1M , fits in 4GB memory on a single machine
when loaded in GraphLab; the rest of the datasets do not.
In the voter PSL model, the variables corresponding to the
truth of the VOTES(person,party) predicate are consensus
variables, and each initialized rule maps to a subproblem.
Each VOTES(person, party) appears in at most eight rules. In
practice, PSL programs can be far more complex and many
more subproblems can be grounded, thus the proportion may
be even larger. In such cases, ACO-HYPER partitioning will
even further reduce communication cost.

2) Performance Results with PSL Inference: We use a
GraphLab vertex program that implements ACO algorithm
described in Section IV and vary the partitioning schemes.
We consider performance of ACO under two settings: full
convergence and early stopping when one considers com-
putation time budgets. It is important to consider the early-
stopped setting since ACO is known to have very fast initial
convergence and then slow convergence toward the final
optimum [1]. In practice, one can stop early when the
majority of variables have converged and quickly obtain
a high-quality approximate solution. As shown in Fig. 3,

Name |S| |C| |E| |S|/|C|

SN1M 3,307,971 1,102,498 6,011,257 3.00
SN2M 6,656,775 2,101,072 12,107,131 3.17
SN3M 9,962,627 3,149,103 18,113,119 3.16
SN4M 13,349,751 4,203,703 24,288,223 3.18

Table I
SUMMARY OF SOCIAL NETWORK DATA SET FOR VOTER MODEL

inference in the PSL voter model converges on 99% of the
consensus variables with 1,000 iterations on all datasets.

Figure 3. Convergence Rate in PSL Voter Model

Full convergence: As shown in Fig. 2(d) and 2(e), we
first vary m to show the running time and speedup under
the full convergence setting. Because SN1M is able to fit
on a single machine, communication cost overwhelms extra
computation resources, and prevents distributed computation
from performing better than single machine. In Fig. 2(d),
ACO-GREEDY performs (2-4×) worse than the single ma-
chine setting, while ACO-HYPER has similar running with a
single machine and is 2× better than ACO-GREEDY.

On larger data sets, our approach is approximately twice
as fast as ACO-GREEDY (Fig. 2(e) and Fig. 2(f)). Note for
the full convergence because fewer than 1% of the consensus
variables are still active after 1,000 iterations, increasing the
number of machines will not produce speedup in terms of
computation time. In Fig. 2(f), we evaluate weak scaling,
both schemes scale well on larger datasets.

Early stopping: Since modern computing models often
include a pay-as-you-go cost, one may not benefit from
waiting for the last few variables to converge. For instance,
the last 1% of vertices in SN2M take 2/3 of the total time for
full convergence. Motivated by this, we measure the running
time to complete 1,000 iterations of ACO-HYPER and ACO-
GREEDY, regardless of the convergence status.

In Fig. 2(g), we show the accumulated running time of
each iteration. Note because we use synchronous setting,
both algorithms have the same state at the end of each
iteration. ACO-HYPER performs 2-4× better than the ACO-
GREEDY because of the reduced communication cost. In
Fig. 2(h), we vary m for SN2M to show the speed up.
We show better returns when increasing m than full conver-
gence, and ACO-HYPER always outperforms ACO-GREEDY.

VII. CONCLUSION

In this paper, we introduce a vertex programming al-
gorithm for distributed ADMM-based consensus optimiza-
tion. To mitigate the communication overhead of distributed
computation, we provide a novel partitioning strategy that
converts the ADMM bipartite computation graph into a
hypergraph and uses a well-studied hypergraph cut algorithm
to assign vertices to machines. Our experiments on proba-
bilistic inference over large-scale, synthetic social networks
demonstrate that our contributions lead to a significant

improvement in performance. The partitioning scheme is of
independent interest to practitioners in vertex programming.

VIII. ACKNOWLEDGEMENTS

This work was supported by NSF grants IIS0746930,
CCF0937094 and IIS1218488, and IARPA via DoI/NBC con-
tract number D12PC00337. The U.S. Government is authorized
to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation thereon. Disclaimer: The
views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the offcial
policies or endorsements, either expressed or implied of IARPA,
DoI/NBC, or the U.S. Government.

REFERENCES

[1] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the al-
ternating direction method of multipliers,” Foundations and
Trends in Machine Learning, vol. 3, no. 1, 2011.

[2] N. Komodakis, N. Paragios, and G. Tziritas, “MRF optimiza-
tion via dual decomposition: Message-passing revisited,” in
IEEE Intl Conf. on Computer Vision (ICCV), 2007.

[3] S. Bach, M. Broecheler, L. Getoor, and D. O’Leary, “Scaling
MPE inference for constrained continuous Markov random
fields with consensus optimization,” in NIPS, 2012.

[4] P. Ferero and A. Cano, “Consensus-based distributed sup-
port vector machines,” The Journal of Machine Learning
Research, vol. 99, pp. 1663–1707, 2010.

[5] S. Bach, B. Huang, B. London, and L. Getoor, “Hinge-
loss Markov random fields: Convex inference for structured
prediction,” in Uncertainty in Artificial Intelligence, 2013.

[6] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-
scale graph processing,” in ACM SIGMOD, 2010.

[7] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“PowerGraph: Distributed graph-parallel computation on nat-
ural graphs,” in USENIX Conference on Operating Systems
Design and Implementation, 2012.

[8] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. Hellerstein, “Distributed GraphLab: A framework for
machine learning and data mining in the cloud,” Proceedings
of the VLDB Endowment, vol. 5, no. 8, pp. 716–727, 2012.

[9] A. Kimmig, S. Bach, M. Broecheler, B. Huang, and L. Getoor,
“A short introduction to probabilistic soft logic,” in NIPS
Workshop on Probabilistic Programming, 2012.

[10] U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-
based decomposition for parallel sparse-matrix vector mul-
tiplication,” IEEE Trans. Parallel and Distributed Systems,
vol. 10, no. 7, pp. 673–693, 1999.

[11] G. Karypis and V. Kumar, “Multilevel k-way hypergraph
partitioning,” in ACM/IEEE Design Automation Conf., 1999.

[12] B. Hendrickson and T. G. Kolda, “Graph partitioning models
for parallel computing,” Parallel computing, vol. 26, no. 12,
pp. 1519–1534, 2000.

[13] “hMetis v2.0pre1,” http://glaros.dtc.umn.edu/gkhome/fetch/
sw/hmetis/hmetis-2.0pre1.tar.gz, May 2007.

[14] H. Miao, X. Liu, B. Huang, and L. Getoor, “A hypergraph-
partitioned vertex programming approach for large-scale con-
sensus optimization,” University of Maryland College Park,
Tech. Rep., 2013, http://arxiv.org/abs/1308.6823.

[15] “GraphLab 2 v2.1.14245,” https://graphlabapi.googlecode.
com/files/graphlabapi v2.1.4245.tar.gz, August 2012.

